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ABSTRACT 

Rooftop photovoltaics (RPVs) play a crucial role in 
reducing urban carbon emissions and aiding the shift 
toward net-zero energy systems. However, the 
complexities of urban settings introduce significant 
variability in RPV costs across different locations and 
times. This study focuses on the Pingshan District in 
Shenzhen, a representative example of cities in southern 
China. The study analyzes geometric characteristics and 
community types from various urban areas to perform K-
means++ clustering. These typical community types are 
then used to comprehensively assess RPV deployment in 
terms of energy, environment, and economics. The study 
provides practical strategies for integrating RPVs, 
offering insights that contribute to sustainable urban 
energy transitions. 
Keywords: rooftop photovoltaic, K-means++, urban 
form, cost-benefit analysis, renewable energy strategy  

NOMENCLATURE 

𝑃𝑉𝑡 PV generation at time 𝑡 
𝐸𝑡  Energy consumption at time 𝑡 
𝑃𝑉𝑠𝑡

 PV energy consumption at time 𝑡 

𝐸𝐺𝑡
 Grid energy consumption at time 𝑡 

𝑃2𝐺𝑡  PV grid feed-in energy at time 𝑡 
𝑛 The number of samples 
𝑋𝑖 , 𝑌𝑖  The values of corresponding points 
𝑋̅, 𝑌̅ The sample means 
τ𝐶  The number of concordant pairs 
𝑛𝑑 The number of discordant pairs 
𝑎(𝑖) The average dissimilarity (same) 
𝑎(𝑗) The average dissimilarity (other) 
𝑅𝑡 RPVs generation revenue 
𝐶𝑡  The cash outflow for 𝑡 

𝐼𝑡  The initial investment cost 
𝑂𝑡 The operational costs 
𝑀𝑡 The maintenance expenses 
𝑡 Year  
𝐸𝐹𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 The carbon emission factor 

1. INTRODUCTION 
In the context of addressing the global climate crisis, 

the adoption of carbon neutrality policies has emerged 
as an urgent measure to control carbon dioxide 
emissions [1]. Against this backdrop, photovoltaic (PV) 
technology has emerged as a pivotal means for China to 
rapidly reduce its reliance on fossil fuels [2]. Urban areas, 
characterized by their dense architectural layout, have 
been identified as a prime domain for the large-scale 
implementation of additional PV power generation. In 
comparison to traditional centralized PV systems, this 
approach effectively mitigates issues of significant solar 
energy wastage. Distributed Photovoltaic (DPV) systems, 
due to their widespread applicability, lower peak energy 
demands, and reduced transmission issues, have 
garnered significant favor [3].  

Nevertheless, despite the manifold advantages of 
DPV systems, the heterogeneity of urban spaces 
presents certain challenges [4]. Disparate urban 
morphologies across different regions result in divergent 
shading patterns and energy consumption profiles, 
consequently influencing the efficacy of PV deployment. 
Non-strategic PV installations may potentially impede 
the national carbon neutrality agenda. Therefore, the 
formulation of PV deployment strategies necessitates a 
comprehensive consideration of regional disparities and 
characteristics. 
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The expansion of distributed photovoltaics requires 
targeted strategic guidance to fully unleash its potential. 
Consequently, numerous researchers have conducted in-
depth studies on photovoltaic deployment strategies 
from various perspectives, including environmental, 
technological, economic, and social dimensions. Some 
have examined the trade-off between cost-effectiveness 
and equitable regional distribution inherent in the 
deployment of distributed photovoltaics [5]. Others have 
pursued distinct approaches to attain national 
photovoltaic objectives, namely, minimizing the number 
of rooftops required to meet national targets while 
concurrently maximizing regional self-sufficiency, all in 
alignment with the broader national photovoltaic 
agenda [6]. Certain studies have focused on economic 
strategies, employing fundamental economic theories 
such as net present value (NPV), payback period, and 
internal rate of return (IRR), to conduct an economic 
comparative analysis of residential solar photovoltaic 
systems across various provinces [7,8]. There have also 
been studies exploring the potential benefits of 
deploying solar photovoltaic systems on urban rooftops, 
with a strategic emphasis on maximizing the reduction of 
the urban heat island effect [9]. 

To adeptly formulate and evaluate urban energy 
strategies, given the escalating volume of urban big data, 
the utilization of machine learning algorithms for data 
simplification has emerged as a discernible trend in 
research. Research endeavors have employed multiple 
linear regression (MLR) and Akaike Information Criterion 
(AIC) to simulate annual heat demand or peak heat 
demand, accomplished through clustering of building 
attributes [10]. Another study leveraged random forest 
regression in conjunction with heterogeneous geospatial 
data sources to identify rooftop areas. Subsequently, K-
means++ clustering analysis was conducted using 
rooftop area, solar radiation, and grid emissions as 
features to unveil the heterogeneity in carbon emission 
reduction potential across distinct cities [11]. 
Furthermore, a study initially utilized Multi-Layer 
Perceptron (MLP) to ascertain annual electricity 
generation and peak power of photovoltaic panels on 
residential rooftops. Subsequently, Support Vector 
Regression (SVP) was employed for data classification, 
facilitating finer-grained energy planning [12]. 
Additionally, the utilization of the DBSCAN clustering 
algorithm, in combination with infrastructure data from 

OpenStreetMap, led to the construction of a global solar 
photovoltaic installation dataset [13]. 

Following the utilization of machine learning 
algorithms to analyze simplified urban datasets, more 
rapid assessments can be conducted regarding 
photovoltaic deployment in aspects encompassing 
energy, environment, and economics. Previous research 
has approached the analysis and evaluation of urban 
photovoltaics from various angles, thereby shaping 
photovoltaic deployment strategies. Several studies 
have undertaken comprehensive evaluations of the 
economic benefits of distributed photovoltaics by 
considering factors such as total project investment, 
electricity generation, and transaction prices across 344 
prefecture-level cities in China [14]. Leveraging key 
metrics such as Levelized Cost of Energy (LCOE) and 
Internal Rate of Return (IRR) based on the technological 
and cost foundations of photovoltaic deployment, 
another study conducted an in-depth economic analysis 
of China's distributed photovoltaic industry [15]. 
Additionally, through estimations of technological 
potential and financial feasibility analysis, a study 
examined and assessed the economic benefits, 
environmental impact, and health effects associated 
with the promotion of household solar photovoltaics at 
the urban level [16]. 

The current study has made significant strides in 
comprehensively formulating photovoltaic deployment 
strategies at a macroscopic level. However, there has 
been limited research focusing on the simplification of 
urban big data through machine learning techniques to 
address urban morphological characteristics, followed by 
the integration of indicators such as IRR and LCOE to 
determine the sequence of photovoltaic deployment at 
the urban community scale.  

In this paper, we initially obtained road network and 
building data through OpenStreetMap (OSM). 
Subsequently, we subdivided the city into communities 
of approximate sizes, extracting community types and 
morphological parameters. Photovoltaic and energy 
consumption simulations were conducted for each 
community. Employing the k-means++ clustering 
technique, six representative community types were 
identified. Building upon this framework, an analysis 
encompassing energy, environment, and economics was 
conducted. Ultimately, the photovoltaic deployment 
strategy for the Pingshan District was derived. 
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Fig. 1 Framework for urban RPV deployment strategy 

2. METHODOLOGY 

2.1 Overview of the framework for urban RPVs 
deployment strategy 

The overarching research framework is depicted in Fig. 
1. Initially, utilizing OpenStreetMap (OSM) data for road 
networks and building information, the district is 
segmented into 317 communities.  

Morphological parameters are then extracted from 
these locales, enabling the simulation of RPVs capacity and 
energy consumption through Energy Plus. Employing the 
K-means++ algorithm based on these morphological 
attributes, six prototypical communities are delineated.  

Ultimately, employing indicators encompassing self-
sufficiency rates, carbon emissions, and internal rate of 
return, a comprehensive trilateral analysis is undertaken, 
evaluating urban RPVs deployment strategies across 
energy, environmental, and economic domains. 

2.2 Data Processing 

The data processing procedure commenced by 
extracting road network and building information for the 
Pingshan District of Shenzhen using OpenStreetMap. 
Subsequently, leveraging the Grasshopper plugin within 
Rhinoceros, the district was partitioned into community 
units of approximately 400 by 400 square meters each, 
based on the road network. Morphological characteristics 
for each community unit were then computed and 
exported.  

These characteristics encompassed parameters such 
as average building height, building footprint, roof area, 
building area, and building count. Additionally, the 
community units were categorized into various types, 
including office, residential, industrial, and other. These 

processed data were organized into a comprehensive data 
matrix for further analysis. 

In addition, to conduct a targeted investigation into 
photovoltaic deployment strategies within Shenzhen, we 
conducted a market survey for the initial investment in a 
10 kW photovoltaic system, as presented in Table 1.  

Furthermore, we obtained the desulfurized coal 
electricity price and government subsidy price for the PV 
grid connection in Shenzhen, which is 0.453 CNY/kWh and 
0.3 CNY/kWh, respectively.  

The carbon emission factor was determined as 0.3748 
kgCO2/kWh. These data, along with the tiered electricity 
pricing structure in Shenzhen, will underpin the 
environmental and economic indicator calculations for 
photovoltaic deployment in this study.  
Table 1 
Investigation of rooftop photovoltaic (10 kW) prices. 

Content Price 

Grid-Connected Inverter 6,300 CNY 
36V Monocrystalline Silicon Panel 32,000 CNY 
AC Distribution Box 1,500 CNY 
Photovoltaic Cabling 1,500 CNY 
RPVs Mounting Structure 8,250 CNY 
Construction Costs 5,000 CNY 
O&M Costs 500 CNY/year 

2.3 Energy simulation 

Following the acquisition of geometric parameters and 
building types, we proceeded to conduct comprehensive 
photovoltaic energy yield simulations and building energy 
consumption simulations for all structures within each 
community unit. This was achieved using the Ladybug 
Tools plugin, which is based on Energy Plus. Subsequently, 
through meticulous data processing, we obtained 
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photovoltaic generation, overall energy consumption, and 
shading rates for a total of 317 community units. 

2.4 K-means++ clustering 

To streamline the extensive workload introduced by 
the vast building dataset during urban energy simulation, 
this study opted to directly extract geometric parameters 
and types for each community. Subsequently, clustering 
was employed to group these community units, whereby 
a small number of representative community types were 
chosen to stand for similar-natured counterparts. This 
approach facilitated a comprehensive assessment of 
photovoltaic deployment. 

Upon obtaining the generated data for photovoltaics, 
energy consumption, and shading rates for each 
community, along with the statistically derived community 
types and geometric parameters, an initial correlation 
analysis was performed on all data using the Pearson and 
Kendall's Tau correlation coefficients [17,18], as depicted 
in Equation (1, 2). 

𝑟 =
∑ (𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅)𝑛

𝑖=1

√∑ (𝑋𝑖 − 𝑋̅)2𝑛
𝑖=1 √∑ (𝑌𝑖 − 𝑌̅)2𝑛

𝑖=1

(1)
 

where 𝑛 represents the number of samples, 𝑋𝑖 and 𝑌𝑖 
denote the values of corresponding points, while 𝑋̅ and 𝑌̅ 
stand for the sample means. 

τ𝐶 =
2(𝑛𝑐 − 𝑛𝑑)

𝑛2 (𝑚 − 1)
𝑚

(2) 

where, 𝑛𝑐  represents the number of concordant 
pairs, 𝑛𝑑 represents the number of discordant pairs, 𝑟 and 
𝑐 denote the number of rows and columns, while m 
represents the minimum value between 𝑟 and 𝑐.  

Before employing k-means++ clustering [19], the 
optimal number of clusters based on the geometric 
parameters of the 317 communities was determined using 
the silhouette coefficient method [20], as depicted in 
Equation (3) This step was taken to achieve improved 
clustering performance. 

𝑆(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

max{ 𝑎(𝑖), 𝑏(𝑖)}
(3) 

where, 𝑏(𝑖)  represents the average dissimilarity of 
vector 𝑖 to the other points within the same cluster, 𝑎(𝑖) 
represents the minimum average dissimilarity of vector 𝑖 
to the points in other clusters. 

Following the clustering of six representative 
community types, this study conducted a comparative 
analysis of the photovoltaic shading distribution across the 

buildings within each of the six typical communities. This 
analysis served as a supplementary validation of the 
clustering correlations. 

2.5 Energy–Environment–Economy (3E) Analysis 

This study comprehensively evaluates urban rooftop 
photovoltaic deployment from three perspectives: energy, 
environment, and economics, for the six representative 
community types extracted through clustering, by 
integrating photovoltaic generation and building energy 
consumption data. 

2.5.1 Energy Performance 

In this study, the Ladybug Tools framework was 
employed to simulate the hourly shading-dependent 
photovoltaic energy yield and hourly energy consumption 
for all buildings in the Pingshan District. The simulation 
process involved defining building types and geometric 
parameters. It was assumed that all buildings engaged in a 
self-consumption behavior, utilizing surplus electricity for 
grid feed-in. Consequently, building energy usage was 
categorized into three distinct classes: photovoltaic self-
consumption, grid electricity supply, and photovoltaic grid 
feed-in. 

𝑃𝑉𝑠𝑡
= 𝑚𝑖𝑛(𝐸𝑡 , 𝑃𝑉𝑡) (4) 

𝐸𝐺𝑡
= 𝐸𝑡 − 𝑃𝑉𝑠𝑡

(5) 

𝑃2𝐺𝑡 = 𝑃𝑉𝑡 − 𝑃𝑉𝑠𝑡
(6) 

where, 𝑃𝑉𝑡 , 𝐸𝑡 , 𝑃𝑉𝑠𝑡
, 𝐸𝐺𝑡

, and 𝑃2𝐺𝑡  respectively 

denote the PV generation, energy consumption, PV energy 
consumption, grid energy consumption, and PV grid feed-
in energy for the community at time 𝑡. 

Self consumption (%) =
∑ 𝑃𝑉𝑠𝑡

𝑇
𝑡=1

∑ 𝑃𝑉𝑡
𝑇
𝑡=1

× 100(%) (7) 

Self sufficiency (%) =
∑ 𝑃𝑉𝑠𝑡

𝑇
𝑡=1

∑ 𝐸𝑡
𝑇
𝑡=1

× 100(%) (8) 

where, 𝑇  represents the total number of hours in a 
year, which is 8760. 

2.5.2 Environmental Performance 

Although rooftop photovoltaics can reduce reliance on 
fossil-fuel-based electricity generation and subsequently 
mitigate carbon emissions, a comprehensive life-cycle 
perspective reveals that carbon dioxide emissions are 
generated during the production, transportation, and 
maintenance of photovoltaic components and rooftop 
installations. While the carbon emissions reduction focus 
of photovoltaics predominantly pertains to the electricity 
generation phase within the power system, neglecting 
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other life-cycle stages[21], this study primarily calculates 
carbon emissions during the operational phase. 

𝐸𝑀 = 𝐸𝑡 × 𝐸𝐹𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 × y (9) 

where 𝐸𝑀 represents the life-cycle carbon emissions 
of RPVs, 𝐸𝐹  signifies the carbon emission factor, and 𝑦 
denotes the operational lifespan. 

2.5.3 Economic Performance 

Urban photovoltaic deployment requires significant 
economic support. In this study, rooftop photovoltaics are 
assumed to account for 100% of the capital investment. 
From an investment perspective, three economic 
indicators, namely IRR [22], LCOE [14], and Payback Period 
were chosen to assess the benefits of photovoltaic 
deployment. The tiered electricity pricing structure is 
based on the electricity price table of Shenzhen. The initial 
photovoltaic investment is referenced from market prices, 
and a discount rate of 6.5% is employed for present value 
calculations. 

𝑅𝑡 = 𝑃𝑉𝑠𝑡
𝑃1 + 𝑃2𝐺𝑡(𝑃2 + 𝑃3) (10) 

where, 𝑅𝑡 represents RPVs generation revenue, 𝑃1, 𝑃2 
and 𝑃3 respectively denote the converted tiered electricity 
price, grid electricity price, and government subsidy. 

𝐿𝐶𝑂𝐸 =
∑ (𝐼𝑡 + 𝑂𝑡 + 𝑀𝑡 + 𝐹𝑡)/(1 + 𝑟)𝑡𝑇

𝑡=𝑜

∑ 𝑄𝑡/(1 + 𝑟)𝑡𝑇
𝑡=0

(11) 

where, 𝐼𝑡  represents the initial investment cost, 𝑂𝑡 , 
𝑀𝑡  and 𝐹𝑡  correspondingly stand for operational costs, 
maintenance expenses, and interest outlays. 𝑟 represents 
the discount rate. 

𝑁𝑃𝑉(𝑟) = ∑(𝑅𝑡 − 𝐶𝑡)(1 + 𝑟)−𝑡

𝑇

𝑡=0

= 0 (12) 

where, 𝐶𝑡  represents the cash outflow for 𝑡, when the 
𝑁𝑃𝑉(𝑟) reaches zero, the calculated value of 𝑟 represents 
the 𝐼𝑅𝑅. 

3. RESULTS 

3.1 Clustering of Typical Communities  

3.1.1 Correlation Analysis 

In this study, a comprehensive correlation analysis was 
conducted on thirteen distinct feature parameters, 
including PV generation, community energy consumption, 
PV shading rate, average building height, building 
footprint, roof area, floor area ratio, building area, building 
count, and building types (office, residential, industrial, 
others). Both Pearson and Kendall’s Tau correlation 
coefficient tests were employed for this purpose. 

The findings revealed significant correlations among 
certain parameters. PV generation exhibited a strong 
positive correlation with roof area (0.98) and a relatively 
strong correlation with building area (0.89) and building 
number (0.77). It should be noted that the non-equal 
correlation value between PV generation and roof area 
(less than 1) is attributed to varying shading conditions 
caused by different buildings within urban units. The PV 
shading rate displayed moderate correlations with floor 
area ratio (0.26) and average building height (0.22), 
indicating their notable influence. Notably, the building 
area demonstrated a substantial correlation with PV 
generation (0.68), yet an even stronger correlation with 
community energy consumption (0.71), suggesting the 
impact of shading rate on PV generation. Additionally, 
building count exhibited a moderate correlation with PV 
generation (0.54) and a significant correlation with 
community energy consumption (0.71), attributed to the 
increase in energy consumption associated with greater 
building quantities. 

Furthermore, the analysis highlighted the variability in 
the degree of association between different building types 
and both PV generation and community energy 
consumption. These research outcomes underscore the 
intricate interplay between various parameters and 
support the use of clustering based on geometric 
parameters and types to simplify complex urban datasets. 

 
Fig. 2 The Combined Pearson and Kendall’s Tau 

Correlation between energy consumption, PV generation, 
shading rates, and morphological parameters. 

3.1.2 Optimal Number of Clusters 

In this study, a rigorous validation process was 
employed utilizing the elbow method, Calinski-Harabasz 
score, and silhouette coefficient method to mutually 
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corroborate the optimal number of clusters for the given 
dataset under the k-means++ algorithm. The analysis 
converged to a consensus, indicating that the most 
suitable clustering configuration for the data was 
determined to be six, as depicted in Fig 3. 

 
Fig. 3 The calculation of the silhouette coefficient to 

determine the optimal number of clusters. 

3.1.3 Six Representative Community Types 

Post-clustering analysis revealed the emergence of six 
distinct typologies within the community dataset. 
Observing Fig 4, it is evident that disparate distribution 
patterns exist among these categories, thereby attesting 
to the efficacy of the clustering outcomes. Notably, Fig 5 
illustrates the representative nature of the typical 
communities in each category and their alignment with 
other communities within the six identified clusters. This 
alignment underscores the ability of the prototypical 
communities to effectively characterize others based on 
geometric parameters and types. Furthermore, Table 2 
provides a comprehensive summary of the various feature 
indicators characterizing the six identified typologies. 

 
Fig. 4 The outcomes of K-means++ clustering. 

From the insights drawn from Fig 5, it becomes 
apparent that the first and second categories are 
dominated by mixed-use buildings, the third category is 
predominantly industrial, and the fourth and fifth 
categories are predominantly office-oriented, with the 
sixth category being residential. An examination of Table 2 
in conjunction with these findings reveals notable 

distinctions. Despite both the first and second categories 
being characterized by mixed-use buildings, the former 
exhibits greater average building height, significantly 
larger roof area, and floor area ratio compared to the 
latter. This implies the potential subdivision of these 
categories into high-density and low-density mixed-use 
communities. Similarly, the fourth and fifth categories, 
both centered around office usage, reveal a substantial 
contrast in terms of average building height and floor area 
ratio, with the former approximately six times that of the 
latter. This discrepancy suggests that the fourth category 
represents high-rise office communities. 

The alignment between clustering outcomes and real-
world observations serves to reaffirm the validity of 
employing geometric parameters and building types for 
the simplification of urban datasets, thus further validating 
the rationale of the clustering methodology. 

3.1.4 Correlation Validation 

Following the clustering analysis, we opted to employ 
photovoltaic degradation rate as an assessment metric to 
explore the distribution of photovoltaic degradation rates 
across the six identified community types. Observations of 
the outcomes reveal discernible distinctions in 
photovoltaic degradation rates among different 
community types. Notably, the interquartile range (IQR) 
values for each community type exhibit relatively small 
differences, with the IQRs of five categories all being less 
than 7%. This phenomenon indicates that within each 
community type, the dispersion of photovoltaic 
degradation rates is minimal, thereby highlighting distinct 
clustering characteristics. Additionally, significant 
differences are observed in the median photovoltaic 
degradation rates across the various community types, 
further corroborating the distinctiveness between 
different category communities.  

These findings further corroborate the effectiveness of 
utilizing geometric parameters and building types for 
clustering in capturing community attributes. 

3.2 Energy Simulation of Typical Communities 

Upon acquiring hourly simulated photovoltaic and 
energy data, this study proceeded to extract weekly time 
windows for each of the six typical community types across 
different seasons of the year. This observation sought to 
discern the behaviors of diverse community categories 
concerning PV generation and energy consumption.  

As depicted in Fig 7, it is evident that the photovoltaic 
curve trends for the six community types exhibit 
approximate similarity, with distinctions primarily 
manifesting in terms of generation capacity. This  
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Table 2 
Distinct characteristics of the six typical communities. 

Cluster 
Average 
height 

Footprint Roof area 
Floor area 

ratio 
Building 

area 
Number OFF RES IND OTH 

1 9.625 0.1341 202239.2 1.9987 2050100 1177 23.29  39.91  5.76  31.04  
2 3.375 0.0215 93180.15 0.1179 659813.4 502 30.17  23.40  0.45  45.98  
3 6.000 0.0177 19477.53 5.0722 268887 67 9.44  0.00  90.56  0.00  
4 36.750 0.0402 36428.16 9.0768 992907.5 36 88.13  0.00  11.87  0.00  
5 6.000 0.0011 19056.19 1.5813 140993 77 82.76  0.24  0.00  17.00  
6 6.000 0.0289 46395.29 3.7268 588217.1 432 3.64  91.71  3.98  0.66  

 

 
Fig. 5 The clustering results reveal distinctive feature distributions among the six typical communities. 

 
Fig. 6 PV shading distribution across buildings in the 

six community types. 

phenomenon is attributed to the fact that, within the same 
climatic context, photovoltaic conditions across various 
community types are primarily influenced by minimal 
variations in shading coefficients. The variability in 
generation capacity arises from the distinct characteristics 
of building quantities and roof areas among different 
community types. In contrast, the energy consumption 
curves for different community types consistently exhibit 
a trend where energy consumption during the summer 
surpasses that during the winter. This trend is reflective of 
Shenzhen's geographical location in a subtropical region of 
China, where the summer season necessitates heightened 
air conditioning demand and consequently increased 
energy consumption. 
Moreover, notable variations exist in the structural form 
of energy consumption curves among different 
community types. As previously analyzed, the first and 
second community types, characterized by mixed building 

compositions, exhibit less distinct features in their energy 
consumption curves due to their diverse building 
typologies. However, both types tend to have higher 
energy consumption on weekdays compared to weekends. 
The lower density of the second type contributes to a 
relatively smaller magnitude of energy consumption peaks 
within its curve.  

Additionally, the photovoltaic curve of this type 
overlaps with the energy consumption curve during 
certain time intervals, signifying the self-consumption of 
photovoltaic energy. The third community type, 
predominantly comprising industrial structures, displays 
discernible disparities between energy consumption on 
weekdays and weekends, and exhibits a bimodal daily 
consumption curve, reflective of machinery operation and 
associated energy consumption during morning and 
afternoon production hours. 

The fourth and fifth community types, dominated by 
office buildings, similarly exhibit lower energy 
consumption on weekdays. The primary differentiation 
between these two types lies in their structural heights, 
with the fourth type comprising high-rise office structures, 
resulting in considerably lower photovoltaic generation 
capacity relative to building consumption. In contrast, the 
fifth type's lower average building height enables 
photovoltaic generation to partially cover building energy 
demand under favorable sunlight conditions. Moreover, 
due to the coexistence of residential structures within the 
fifth type, the bimodal energy consumption pattern daily 
is less pronounced compared to the fourth type. Finally, 
the sixth community type, characterized by residential  
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Fig. 7 The photovoltaic and energy consumption curves of six typical communities during different seasons 

throughout the year.

buildings, attains its peak energy consumption during 
evening hours, with a minor peak observed in the early 
morning. This pattern is attributed to residential 
occupants returning home and initiating appliance usage 
in the evenings, with a subsequent modest increase in 
energy consumption following morning activities. 

The qualitative assessment of hourly energy 
consumption diagrams serves to characterize the interplay 
between photovoltaic generation and energy 
consumption across the six typical community types. 
Furthermore, this exercise enhances our understanding of 
the distinctive variations existing among different 
community categories. Consequently, the feasibility of the 
undertaken clustering analysis is reaffirmed. 

3.3 Energy–Environment–Economy (3E) Analysis 

3.3.1 Energy Performance 

Following the simulation of hourly photovoltaic 
generation and energy consumption for the typical 
community clusters, under the assumption of a self-
consumption and surplus electricity grid-feeding strategy, 
this study classifies energy into three categories: 
photovoltaic self-consumption, grid electricity supply, and 
photovoltaic grid-feeding. Subsequently, the self-
consumption rate and self-sufficiency rate for each 
community category are computed. 

The self-consumption rate, defined in this study as the 
proportion of photovoltaic self-consumed energy to total 
photovoltaic generation, serves as an indicator of system 

efficiency. A higher self-consumption rate signifies greater 
energy self-sufficiency and reduced reliance on the 
external electricity supply. By comparing self-consumption 
rates, it is evident that the sixth community type, 
dominated by residential buildings, achieves a self-
consumption rate of 100%. This indicates that residential 
communities can effectively utilize photovoltaic-
generated electricity, thereby minimizing surplus grid-
feeding and showcasing promising economic potential in 
terms of energy performance. High-rise office-dominated 
communities attain a self-consumption rate of 98.6%, 
primarily due to the relatively small energy demand of 
high-rise buildings concerning their photovoltaic 
generation capacity. 

The self-sufficiency rate, defined as the proportion of 
photovoltaic self-consumed energy to total building 
electricity consumption, is another key metric analyzed in 
this study. It is noteworthy that the self-sufficiency rates 
across various community types are relatively low. 
Specifically, the self-sufficiency rate for high-rise office-
dominated communities is 10.1%, indicating significant 
room for improvement in flexible energy utilization within 
this community. Comparatively higher self-sufficiency is 
observed in the fifth community type, predominantly due 
to the overlapping nature of its photovoltaic and energy 
consumption curves. 

3.3.2 Environmental Performance 

In this study, the environmental performance of 
photovoltaic deployment was assessed using a life cycle  
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Table 3 
Energy, Environmental, and Economic Evaluation Indicators for the Six Representative Community Types. 

Cluster PV/kWh EN/kWh SC SS CO2/kg 𝑹𝒕 IRR 
Payback 
Period 

LCOE 
Shading 

rate 

1 26996320 116663900 0.981 0.227 43725624 2047.57  0.0893 11 0.6891 9.3 
2 12323554 357303330 0.932 0.321 13391728 935.04  0.0882 11 0.6955 10.1 
3 2482435 9911961 0.943 0.236 3715003 188.09  0.0836 12 0.7217 13.4 
4 4304789 41664294 0.986 0.101 15615777 326.42  0.0749 13 0.7784 19.7 
5 2576520 5789079 0.898 0.400 2169747 195.71  0.0911 11 0.6803 8.1 
6 6244251 48755676 1 0.128 18273627 473.35  0.0903 11 0.6834 8.5 

carbon emissions approach. The carbon emissions of 
different community types exhibit a proportional 
relationship with their energy consumption. Notably, the 
highest carbon emissions are observed in the first 
community type, characterized by high-density mixed-use 
buildings, which annually generate 43,725,623.98 kg of 
carbon dioxide. Conversely, the lowest carbon emissions 
are found in the low-rise office-dominated community, 
with an annual carbon emission of 2,169,746.962 kg, 
representing approximately one-twentieth of the 
emissions from the first community type. 

3.3.3 Economic Performance 

In this study, it is assumed that the investment in RPVs 
deployment constitutes 100% of the capital, thus not 
considering bank loans or financing. The evaluation of the 
economic viability of PV deployment in different types of 
communities is conducted through three key indicators: 
IRR, LCOE, and Payback Period. Specific numerical values 
are provided in Table 3, the main conclusions drawn from 
the analysis are as follows: The IRR for the community 
dominated by high-rise office buildings is calculated at 
7.4%, which is below the standard benchmark of 8% often 
used in rooftop PV investment assessment. This suggests a 
relatively lower return on investment for the PV project in 
this context. The LCOE values for all typical community 
types are below 0.9504 CNY/kWh, which is the average 
weighted electricity price for Shenzhen during 2022-2023, 
implying that distributed PV electricity costs are lower 
than the electricity prices paid by local industrial and 
commercial users. However, these values are still higher 
than the price of desulfurized coal (0.453 CNY/kWh).  

This indicates that, from the perspective of power 
generation, distributed PV electricity costs remain higher 
than the local desulfurized coal price under the current PV 
cost and technological conditions, posing certain 
challenges to achieving grid parity on the generation side. 

The payback periods for all community types exceed 
10 years, indicating that the investment cost of PV 

deployment in Shenzhen remains relatively high. Notably, 
the community dominated by high-rise office buildings 
exhibits the longest payback period of 13 years. 

Given similar climate conditions, local electricity 
prices, and subsidies, the economic performance of PV 
deployment in the same region is greatly influenced by the 
geometric parameters of the community. Average building 
height and plot ratio result in varying levels of shading, 
leading to reductions in PV output and consequently 
affecting the economic feasibility of PV deployment. 

3.3.4 RPVs Deployment Strategy 

The 3E analysis encompasses a range of evaluation 
metrics for RPVs deployment, among which self-
consumption rate, carbon emissions, and IRR hold 
significance. In this study, these indicators serve as 
references for the proposed PV deployment strategy in the 
Pingshan district. Given the substantial reliance on 
economic investment for PV implementation, IRR stands 
as the foremost consideration. 

The 3E performance distribution across six typical 
communities is depicted in Fig 8. It is evident that the 
fourth category, characterized by high-rise office-
dominated communities, exhibits the lowest IRR and 
comparatively higher carbon emissions. Thus, it is deemed 
suitable for subsequent deployment phases. Conversely, 
the fifth category, comprising low-rise office-dominated 
communities, showcases the highest IRR at 9.1% and the 
lowest carbon emissions, underscoring its priority for 
initial deployment. Furthermore, residential-dominated 
communities present a relatively substantial IRR and attain 
a self-consumption rate of 100%, warranting a preferential 
deployment approach. 

The first and second categories exhibit closely 
proximate IRR values. However, the former exhibits 
significantly higher carbon emissions compared to the 
latter. Consequently, the deployment sequence for low-
density mixed-use communities takes precedence over 
high-density counterparts. 
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Fig. 8 Self-Consumption Rate, Carbon Emissions, and 
IRR for the Six Representative Community Types. 

4. DISCUSSION AND LIMITATION 
The present study has yet to incorporate alternative 

investment modalities for RPVs installations, such as 
operational leasing models, zero-down payment PV loan 
models, and rooftop rental schemes. Future investigations 
may delve into delineating the optimal investment 
approach corresponding to various urban units. 

The current scope of urban inquiry encompasses the 
Ping Shan district of Shenzhen. Subsequent endeavors 
could extend the methodological framework delineated 
herein to encompass the entirety of Shenzhen. This 
expansion could leverage machine learning algorithms to 
streamline data processing and employ the 3E analysis for 
formulating RPVs deployment strategies. Moreover, a 
comparative analysis could be pursued, involving Beijing, a 
city characterized by distinct climatic conditions, local 
electricity tariffs, and urban morphologies, to enrich the 
investigation by contrasting North and South China urban 
contexts. 

The existing evaluative model confines itself to the 
realms of energy, environment, and economics. Future 
research avenues may encompass a broader spectrum, 
introducing social dimensions. This incorporation could 
encompass gauging the residents' inclinations toward PV 
adoption across disparate communities, augmenting the 
analysis with a 3ES model, thus fostering a more 
comprehensive and unbiased conclusion. 

5. CONCLUSION  
This study extracted geometric parameters and 

typologies of various communities to perform clustering, 
subsequently utilizing representative typologies to 

conduct comprehensive evaluations of RPVs deployment. 
The main conclusions derived from this analysis are as 
follows: 

1. Through correlation analysis, validation, and 
clustering results, it was demonstrated that urban units 
can be clustered based on their geometric parameters and 
typologies. This enables the representation of vast urban 
data through typical units, simplifying the study of urban 
energy. 

2. Notable discrepancies exist in PV and energy 
consumption curves among the six typical community 
categories, thereby corroborating actual energy 
consumption patterns. 

3. Regarding energy aspects, residential communities 
exhibit a 100% self-consumption rate, indicating intrinsic 
energy usage and economic potential. However, all 
building types have a self-sufficiency rate of less than 50%, 
indicating considerable flexibility in energy consumption. 

4. Environmental implications reveal that carbon 
emissions are primarily linked to building energy 
consumption, with high-density mixed-use communities 
registering the highest emissions at 43,725,623.98 kg per 
year. 

5. From an economic perspective, the IRR for high-rise 
office-dominated communities is 7.4%, implying a 
relatively lower investment return. Conversely, other 
community types exceed an 8% IRR, aligning with standard 
metrics in rooftop PV investment. The LCOE ranges 
between 0.453 CNY/kWh and 0.9504 CNY/kWh, 
suggesting end-users can access cost-parity given current 
technology and cost levels. However, achieving grid parity 
on the generation side remains challenging. 

6. Utilizing representative typologies, the study 
determined a sequence for RPVs deployment in 317 
community units within Shenzhen's Ping Shan district. The 
recommended order is to commence with low-rise office-
dominated communities, followed by residential-
dominated communities, low-density mixed-use 
communities, high-density mixed-use communities, 
industrial-dominated communities, and ultimately high-
rise office-dominated communities. 

This study elucidates efficacious approaches for the 
integration of RPVs, imparting valuable insights conducive 
to the pursuit of sustainable urban energy transitions. 
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