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ABSTRACT 
 The proper scheduling of residential demand-side 
flexible resources, such as static batteries and flexible 
loads, is crucial for mitigating the impacts of intermittent 
and fluctuating residential rooftop PV generation on 
utility grids. Previous studies have often overlooked the 
benefits of different stakeholders involved in the optimal 
scheduling process. To address these gaps, this study 
proposed a comprehensive framework for the many-
objective optimal dispatch of residential PV-battery-
flexible load systems, considering the interests of users, 
grid operators, and governments. Specifically, a day-
ahead optimal dispatch model with six objective 
functions relevant to the three stakeholders' benefits 
was developed. The effectiveness of the framework was 
validated through case studies, which demonstrated a 
significant improvement in system performance 
compared to the maximizing self-consumption strategy. 
The proposed framework can provide valuable guidance 
for the optimal scheduling of residential PV-battery-
flexible load systems in practice. 
 
Keywords: residential PV-battery-flexible load systems, 
demand-side management, optimal scheduling, 
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1. INTRODUCTION 
Developing renewable energy generation 

technology is an important way to achieve the goal of 
carbon neutrality. The government has introduced a 
large number of favorable policies to promote the 
application of photovoltaic (PV) power generation and 
wind power generation. More and more PV panels are 
installed on the roofs of residential buildings, 
transforming buildings from traditional consumers to 
prosumers. The increasing proportion of PV generation 
would have a significant impact on the stable operation 

of utility grids. How to manage the demand-side flexible 
resources of residential buildings to decrease the 
influence of intermittent PV generation on the grid is a 
great challenge. 

A common way to manage the demand-side flexible 
resources of residential buildings is to perform the day-
ahead optimal scheduling with some certain 
optimization objectives to obtain the optimal operation 
schemes. The energy costs were selected as optimization 
objectives to conduct the scheduling optimization in 
numerous studies [1–3]. Moreover, some literature was 
to maximize occupant’s thermal comfort [4,5]. Few 
studies also focused on the impacts of household 
electricity consumption on utility grids [6]. However, 
these studies only focused on one or two optimization 
objectives. A comprehensive consideration of various 
optimization objectives is necessary, due to the optimal 
dispatch involving the benefits of various stakeholders, 
including end-users, grid operators, and national 
governments. 

2. METHODOLOGY 
A typical residential home energy system, called PV-

battery-flexible load system, is introduced first. Then, the 
proposed optimization models to perform the day-ahead 
optimal scheduling of PV-battery-flexible load systems is 
described in details. 

2.1 A typical residential PV-battery-flexible load system 

A typical resident PV-battery-flexible load system is 
shown in Fig. 1. Distributed PV generation and battery 
banks are configured to satisfy household electricity 
loads, including flexible loads and inflexible loads. The 
system is connected with utility grids and can exchange 
power with the grid. Moreover, the flexible loads include 
thermostatically controlled loads (TCLs) and deferrable 
loads, which can be scheduled to provide grid services. 
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Fig. 1. A typical residential PV-battery-flexible load 

system. 

2.2 Optimization models 

A many-objective nonlinear optimization model was 
developed to perform the day-ahead optimal scheduling 
of PV-battery-flexible load systems. The details of the 

model, including the optimization variables, objective 
functions, and constraints are introduced in this section. 

2.2.1 Optimization variables 

The optimization variables of the model are TCLs’ 
temperature setpoints, deferrable loads’ start-up time, 
and battery’s charging/discharging power, as presented 

in Eq. (1). In this equation, 𝑇𝑡𝑐𝑙
𝑠𝑒𝑡  is the decision variable 

regrading TCLs’ temperature setpoints; 𝜏𝑡𝑐𝑙
𝑠𝑡𝑎𝑟𝑡  and 

𝜏𝑡𝑐𝑙
𝑒𝑛𝑑  are the turn-on moment and turn-off moment of 

TCLs, which depend on occupants. Since the operation of 
TCLs is featured by ‘part-time-part-space’ in China, which 
is not throughout the day, the occupant behaviors of 
TCLs usage were considered in this study. Moreover, 

𝜏𝑠ℎ𝑖𝑓𝑡
𝑠𝑡𝑎𝑟𝑡  is the decision variable on the start-up time of 

deferrable loads. 𝑃𝑏𝑎𝑡  is the decision variable about the 
charging/discharging power of battery banks, and N is 
the total amount of timesteps. 

𝑋 = [𝑇𝑡𝑐𝑙
𝑠𝑒𝑡(𝜏𝑡𝑐𝑙

𝑠𝑡𝑎𝑟𝑡), … , 𝑇𝑡𝑐𝑙
𝑠𝑒𝑡(𝜏𝑡𝑐𝑙

𝑒𝑛𝑑), 𝜏𝑠ℎ𝑖𝑓𝑡
𝑠𝑡𝑎𝑟𝑡 , 𝑃𝑏𝑎𝑡(1), … , 𝑃𝑏𝑎𝑡(𝑁)] (1) 

2.2.2 Objective functions 

Moreover, six optimization objectives were 
selected in the developed optimal model considering the 
benefits of end-users, grid operators, and national 
governments. The optimization objectives are to 
minimize household’s daily operation costs, user 
dissatisfaction, the peak-valley difference, CO2 
emissions, and to maximize the self-consumption rate 
(SCR) and self-sufficiency rate (SSR) of PV generation, as 
described below. 

The daily operation costs were calculated by Eqs. 
(2)-(6), where Eq. (3), Eq. (4), Eq. (5), and Eq. (6) are to 
calculate the operation costs of PV, the costs of battery 
degradation, electricity bills, and the bonus from feeding 
the distributed PV generation into utility grids, 
respectively. 

     𝐹1(𝑋) = 𝑚𝑖𝑛(𝐶𝑝𝑣 + 𝐶𝑏𝑎𝑡 + 𝐶𝑔𝑟𝑖𝑑,𝑖𝑚
− 𝐶𝑔𝑟𝑖𝑑,𝑒𝑥) 

(2) 

𝐶𝑝𝑣 = 𝑃𝑝𝑣
𝑛𝑜𝑚 ∙ 𝜖𝑝𝑣 ∙ ∆𝜏 ∙ 𝑇/𝐿𝑐𝑦𝑐

𝑝𝑣  (3) 

𝐶𝑏𝑎𝑡 = (
1 − 𝑆𝑂𝐻

1 − 𝛼𝑟𝑒𝑝
)  ⋅ 𝜖𝑏𝑎𝑡 ⋅ 𝐸𝑏𝑎𝑡

𝑛𝑜𝑚 (4) 

𝐶𝑔𝑟𝑖𝑑,𝑖𝑚 =∑𝜖𝑔,𝑖𝑚(𝜏) ⋅ 𝑃𝑔𝑟𝑖𝑑,𝑖𝑚(𝜏) ⋅ ∆𝜏

𝑇

𝜏=1

 (5) 

𝐶𝑔𝑟𝑖𝑑,𝑒𝑥 =∑𝐹𝑖𝑇 ⋅ 𝑃𝑔𝑟𝑖𝑑,𝑒𝑥(𝜏) ⋅ ∆𝜏

𝑇

𝜏=1

 (6) 

where 𝐶𝑝𝑣 , 𝐶𝑏𝑎𝑡 , 𝐶𝑔𝑟𝑖𝑑,𝑖𝑚 , and 𝐶𝑔𝑟𝑖𝑑,𝑒𝑥  are the 

operation costs of PV, the costs of battery degradation, 

electricity bills, and the bonus from selling power; 𝑃𝑝𝑣
𝑛𝑜𝑚 

and 𝐸𝑏𝑎𝑡
𝑛𝑜𝑚  are the rated capacity of PV arrays and 

batters; 𝜖𝑝𝑣  and 𝜖𝑏𝑎𝑡  are the unit capital cost of PV 

and batteries; 𝜖𝑔,𝑖𝑚  and FiT are the electricity price 

tariffs and the feed-in-tariff; 𝑃𝑔𝑟𝑖𝑑,𝑖𝑚  and 𝑃𝑔𝑟𝑖𝑑,𝑒𝑥  

are the power imported from utility grids and the power 

fed into utility grids; T is the number of timesteps; 𝐿𝑐𝑦𝑐
𝑝𝑣

 

is the life time of PV arrays. 
User’s dissatisfaction was expressed by Eqs. (7)-

(10), according to Ref. [7]. Eqs. (8)-(10) is to calculate the 
dissatisfaction 𝜑𝑡𝑐𝑙  caused by changing TCLs’ 
temperature setpoints, while Eq. (32) is to calculate the 
dissatisfaction 𝜑𝑠ℎ𝑖𝑓𝑡  from the shifting of deferrable 

load’s start-up time. 

           𝐹2(𝑋) = 𝑚𝑖𝑛(𝜔𝑡𝑐𝑙𝜑𝑡𝑐𝑙 + 𝜔𝑠ℎ𝑖𝑓𝑡𝜑𝑠ℎ𝑖𝑓𝑡) 

 𝑡𝑐𝑙 ∈ {𝐴𝐶𝑠, 𝐸𝑊𝐻𝑠}; 𝑠ℎ𝑖𝑓𝑡
∈ {𝑊𝑀𝑠, 𝑐𝑙𝑜𝑡ℎ𝑒𝑠 𝑑𝑟𝑦𝑒𝑟𝑠, 𝑑𝑖𝑠ℎ𝑤𝑎𝑠ℎ𝑒𝑟𝑠} 

(7) 

𝜑𝑡𝑐𝑙 =
∑

𝑒𝜓𝑡𝑐𝑙 (𝜏) − 1
𝑒 − 1

𝜏𝑒𝑛𝑑
𝜏𝑠𝑡𝑎𝑟𝑡

𝑁𝑡𝑐𝑙
 

(8) 

𝜓𝑡𝑐𝑙  (𝜏) =
|𝑇𝑡𝑐𝑙
𝑠𝑒𝑡(𝜏)−𝑇𝑡𝑐𝑙

𝑠𝑒𝑡,𝑝𝑟𝑒
|

𝑇𝑡𝑐𝑙
𝑠𝑒𝑡,𝑚𝑎𝑥−𝑇𝑡𝑐𝑙

𝑠𝑒𝑡,𝑚𝑖𝑛   (9) 

𝜑𝑠ℎ𝑖𝑓𝑡 =
|𝜏𝑠ℎ𝑖𝑓𝑡
𝑠𝑡𝑎𝑟𝑡 − 𝜏𝑠ℎ𝑖𝑓𝑡

𝑠𝑡𝑎𝑟𝑡,𝑝𝑟𝑒
|

𝜏𝑠ℎ𝑖𝑓𝑡
𝑠𝑡𝑎𝑟𝑡,𝑚𝑎𝑥 − 𝜏𝑠ℎ𝑖𝑓𝑡

𝑠𝑡𝑎𝑟𝑡,𝑚𝑖𝑛
 (10) 

where 𝜔𝑡𝑐𝑙  and 𝜔𝑠ℎ𝑖𝑓𝑡  are the weights; 𝜏𝑠𝑡𝑎𝑟𝑡  and 

𝜏𝑒𝑛𝑑  are the turn-on moment and turn-off moment of 
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TCLs; 𝜓𝑡𝑐𝑙  denotes the degree that the optimal TCL’s 

temperature setpoint 𝑇𝑡𝑐𝑙
𝑠𝑒𝑡(𝜏) deviates from occupants 

desired setting value 𝑇𝑡𝑐𝑙
𝑠𝑒𝑡,𝑝𝑟𝑒

; 𝑇𝑡𝑐𝑙
𝑠𝑒𝑡,𝑚𝑎𝑥  and 𝑇𝑡𝑐𝑙

𝑠𝑒𝑡,𝑚𝑖𝑛 

are the upper and lower limits of occupant preference of 

TCL’s temperature setting; 𝜏𝑠ℎ𝑖𝑓𝑡
𝑠𝑡𝑎𝑟𝑡  is the optimized 

deferrable load’s turn-on moment; 𝜏𝑠ℎ𝑖𝑓𝑡
𝑠𝑡𝑎𝑟𝑡,𝑝𝑟𝑒

 is 

occupants desired turn-on moment, 𝜏𝑠ℎ𝑖𝑓𝑡
𝑠𝑡𝑎𝑟𝑡,𝑚𝑎𝑥  and 

𝜏𝑠ℎ𝑖𝑓𝑡
𝑠𝑡𝑎𝑟𝑡,𝑚𝑖𝑛  are the upper and lower limits of flexibility 

window. 
The peak-valley difference of net power profiles was 

formulated by Eq. (11), where 𝑃𝑔𝑟𝑖𝑑
𝑝𝑒𝑎𝑘

 is the peak power 

of net power profiles and 𝑃𝑔𝑟𝑖𝑑
𝑣𝑎𝑙𝑙𝑒𝑦

 is the valley power of 

net power profiles. 

𝐹3(𝑋) =  𝑚𝑖𝑛(𝑃𝑔𝑟𝑖𝑑
𝑝𝑒𝑎𝑘

− 𝑃𝑔𝑟𝑖𝑑
𝑣𝑎𝑙𝑙𝑒𝑦

) (11) 

The SCR of PV generation was calculated by Eq. (12), 
where 𝐸𝑝𝑣−𝑙𝑜𝑎𝑑  is the PV generation that was 

consumed by loads, and 𝐸𝑝𝑣 is the total PV generation. 

𝐹4(𝑋) =  𝑚𝑎𝑥 (
𝐸𝑝𝑣−𝑙𝑜𝑎𝑑

𝐸𝑝𝑣
) (12) 

The SSR of PV generation was formulated by Eq. 
(13), where 𝐸𝑙𝑜𝑎𝑑  is the total loads of household. 

𝐹5(𝑋) =  𝑚𝑎𝑥 (
𝐸𝑝𝑣−𝑙𝑜𝑎𝑑

𝐸𝑙𝑜𝑎𝑑
) (13) 

The daily CO2 emissions were expressed by Eq. (14), 
where 𝜙 is the CO2 emission coefficient of the power 
purchased from utility grids, and 𝐸𝑔𝑟𝑖𝑑−𝑙𝑜𝑎𝑑  is the 

electricity consumed by loads among the power 
purchased from utility grids. 

𝐹6(𝑋) = 𝑚𝑖𝑛(𝜙 ∙ 𝐸𝑔𝑟𝑖𝑑−𝑙𝑜𝑎𝑑) (14) 

2.2.3 Constraints 

The constraints of the model include occupant 
behaviors constraints and energy balance constraints, 
which are described as follows. 

The occupant behaviors constraints include the 
limits on the optimization variables regarding TCLs’ 
temperature setpoints and deferrable loads’ start-up 
time, as presented by Eq. (15) and Eq. (16). In these 

equations, [𝑇𝑡𝑐𝑙
𝑠𝑒𝑡,𝑚𝑖𝑛, 𝑇𝑡𝑐𝑙

𝑠𝑒𝑡,𝑚𝑎𝑥] is the TCL’s temperature 
setpoint range that occupants are used to setting; 

[𝜏𝑠ℎ𝑖𝑓𝑡
𝑠𝑡𝑎𝑟𝑡,𝑚𝑖𝑛, 𝜏𝑠ℎ𝑖𝑓𝑡

𝑠𝑡𝑎𝑟𝑡,𝑚𝑎𝑥] is the periods that occupants are 

used to using deferrable household appliances, such as 
WMs, clothes dryers, and dishwashers. The limits on the 
optimization variables of battery’s charging/discharging 

power are shown in Eq. (17), where 𝑃𝑏𝑎𝑡
𝑑𝑖𝑠,𝑚𝑎𝑥  and 

𝑃𝑏𝑎𝑡
𝑐ℎ,𝑚𝑎𝑥  are the maximum discharging power and 

charging power of the battery. Moreover, occupant 
behaviors of flexible household appliances use, such as 
daily use frequency, start time of operation, and 
operation duration, were used as operation constraints 
of flexible loads. The parameters relevant to occupant 
behaviors were determined by statistical analysis based 
on the historical operation of flexible loads. 

𝑇𝑡𝑐𝑙
𝑠𝑒𝑡,𝑚𝑖𝑛  ≤  𝑇𝑡𝑐𝑙

𝑠𝑒𝑡(𝜏)  ≤  𝑇𝑡𝑐𝑙
𝑠𝑒𝑡,𝑚𝑎𝑥 (15) 

𝜏𝑠ℎ𝑖𝑓𝑡
𝑠𝑡𝑎𝑟𝑡,𝑚𝑖𝑛  ≤ 𝜏𝑠ℎ𝑖𝑓𝑡

𝑠𝑡𝑎𝑟𝑡 ≤ 𝜏𝑠ℎ𝑖𝑓𝑡
𝑠𝑡𝑎𝑟𝑡,𝑚𝑎𝑥  (16) 

𝑃𝑏𝑎𝑡
𝑑𝑖𝑠,𝑚𝑎𝑥 ≤ 𝑃𝑏𝑎𝑡(𝜏) ≤ 𝑃𝑏𝑎𝑡

𝑐ℎ,𝑚𝑎𝑥 (17) 

The energy balance constraints were formulated by 
Eq. (18). In this equation, 𝑃𝑔𝑟𝑖𝑑(𝜏)  is the power that 

households exchanged with utility grids; 𝑃𝑝𝑣(𝜏) is the 

power of PV; 𝑃𝑏𝑎𝑡(𝜏) is the power of batteries; 𝑃𝑡𝑐𝑙(𝜏) 

is the power of TCLs; 𝑃𝑠ℎ𝑖𝑓𝑡
𝑖𝑛 (𝜏)  is the power of 

deferrable loads; 𝑃𝑖𝑛𝑓𝑙𝑒𝑥(𝜏) is the power of household 

inflexible loads. 𝑃𝑝𝑣(𝜏) , 𝑃𝑏𝑎𝑡(𝜏), 𝑃𝑡𝑐𝑙
𝑖𝑛 (𝜏), 𝑃𝑠ℎ𝑖𝑓𝑡

𝑖𝑛 (𝜏) , 

and 𝑃𝑖𝑛𝑓𝑙𝑒𝑥(𝜏)  were calculated by the models of PV, 

battery banks, TCLs, deferrable loads, and inflexible 
loads. The details are described as follows. 

𝑃𝑔𝑟𝑖𝑑(𝜏) = 𝑃𝑏𝑎𝑡(𝜏) + 𝑃𝑡𝑐𝑙(𝜏) + 𝑃𝑠ℎ𝑖𝑓𝑡
𝑖𝑛 (𝜏)

+ 𝑃𝑖𝑛𝑓𝑙𝑒𝑥(𝜏) − 𝑃𝑝𝑣(𝜏) 
(18) 

The output power of PV was calculated by Eqs. (19)-
(21) [8].  

𝑃𝑝𝑣(𝜏) = 𝐺𝑠(𝜏) ⋅ 𝐴𝑝𝑣 ⋅ 𝜂𝑆𝑇𝐶 ⋅ 𝜂𝑇(𝜏)

⋅ 𝜂𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟  
(19) 

𝜂𝑇(𝜏) = 1 + 𝛾 ⋅ (𝑇𝑚𝑜𝑑𝑢𝑙𝑒(𝜏) − 𝑇𝑆𝑇𝐶) (20) 

𝑇𝑚𝑜𝑑𝑢𝑙𝑒(𝜏) = 𝑇𝑒𝑛(𝜏) + 𝐺𝑠(𝜏)

⋅ (
𝑇𝑁𝑂𝐶𝑇 − 20

800
) 

(21) 

where 𝑃𝑝𝑣  is the power of PV generation; 𝐺𝑠  is the 

solar radiation; 𝐴𝑝𝑣 is the areas of installed PV arrays; 

𝜂𝑆𝑇𝐶  is the power generation efficiency of PV arrays 
under standard test conditions (STC); 𝜂𝑇  is the 
correction factor, representing the power loss deriving 
from PV module temperature rising; 𝜂𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟  is 
inverter’s conversion efficiency; 𝛾  is PV modules’ 
power temperature coefficient; 𝑇𝑚𝑜𝑑𝑢𝑙𝑒  is PV modules’ 
operation temperature; 𝑇𝑆𝑇𝐶  is PV modules’ 
temperature under STC; 𝑇𝑒𝑛  is the ambient 
temperature, ºC; 𝑇𝑁𝑂𝐶𝑇  is PV modules’ Nominal 
Operating Cell Temperature (NOCT); 𝜏 is time slot. The 
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forecasted meteorological data was obtained from the 
local Meteorological Administration through an 
Application Program Interface (API). 

For the model of battery banks, it can be expressed 
by Eq. (22) [9], where SOC is the state of charge of the 
battery. Eq. (23) is the operation constraints of the 
battery. Moreover, the degradation of the battery was 
formulated by Eqs. (24)-(26) [10], which is the results of 
battery’s charging and discharging. The degradation 
would cause the decreasing of the state of health (SOH) 
of the battery, which can be calculated by Eq. (27) 

𝑆𝑂𝐶(𝜏) = 𝑆𝑂𝐶(𝜏 − 1)

+ [
𝜋 ⋅ 𝑃𝑏𝑎𝑡(𝜏) ⋅ 𝜂𝑐ℎ

𝐸𝑏𝑎𝑡
𝑛𝑜𝑚 + (1

− 𝜋)
𝑃𝑏𝑎𝑡(𝜏)

𝜂𝑑𝑖𝑠 ∙ 𝐸𝑏𝑎𝑡
𝑛𝑜𝑚] ⋅ ∆𝜏 

(22) 

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶(𝑡) ≤ 𝑆𝑂𝐶𝑚𝑎𝑥  (23) 

𝛽𝑏𝑎𝑡
𝑡𝑜𝑡(𝜏) = 𝛽𝑏𝑎𝑡

𝑐𝑎𝑙(𝜏) + 𝛽𝑏𝑎𝑡
𝑐𝑦𝑐(𝜏) (24) 

𝛽𝑏𝑎𝑡
𝑐𝑎𝑙(𝜏) = [6.6148 × 10−6 × 𝑆𝑂𝐶(𝜏)

+ 4.6404 × 10−6] ⋅
𝛥𝜏

60
 

(25) 

𝛽𝑏𝑎𝑡
𝑐𝑦𝑐
(𝜏)

= 0.5

⋅
|𝜋 ⋅ 𝑃𝑏𝑎𝑡

𝑐ℎ (𝜏) − (1 − 𝜋) ⋅ 𝑃𝑏𝑎𝑡
𝑑𝑖𝑠(𝜏)| ⋅ 𝛥𝜏

𝐿𝑐𝑦𝑐
𝑏𝑎𝑡 ⋅ 𝐸𝑏𝑎𝑡

𝑛𝑜𝑚  

(26) 

𝑆𝑂𝐻(𝜏) = 1 − 0.2 × 𝛽𝑏𝑎𝑡
𝑡𝑜𝑡(𝜏) (27) 

where 𝑃𝑏𝑎𝑡  is battery’s charging/discharging power; 
𝜂𝑐ℎ  is battery’s charging efficiency; 𝜂𝑑𝑖𝑠  is battery’s 
discharging efficiency; 𝜋  is a binary variable; ∆𝜏  is 
time intervals; 𝑆𝑂𝐶𝑚𝑖𝑛  is the minimum value of 
battery’s SOC, while 𝑆𝑂𝐶𝑚𝑎𝑥  is the maximum value of 

that; 𝑃𝑏𝑎𝑡
𝑑𝑖𝑠,𝑚𝑎𝑥  and 𝑃𝑏𝑎𝑡

𝑐ℎ,𝑚𝑎𝑥  are the maximum 
discharging power and charging power of the battery; 

𝛽𝑏𝑎𝑡
𝑡𝑜𝑡  is the total degradation of the battery; 𝛽𝑏𝑎𝑡

𝑐𝑎𝑙  and 

𝛽𝑏𝑎𝑡
𝑐𝑦𝑐

 are the calendric aging and the cyclic aging;  𝐿𝑐𝑦𝑐
𝑏𝑎𝑡  

is the life time of the battery; 𝐸𝑏𝑎𝑡
𝑛𝑜𝑚 is the rated capacity 

of the battery. 
TCLs in residential buildings mainly include air 

conditioners (ACs) and water heaters. The operating 
power of ACs can be formulated by Eqs. (28)-(32) [11]. 

𝑃𝑎𝑐(𝜏) = {
0,     𝜏 < 𝜏𝑎𝑐

𝑠𝑡𝑎𝑟𝑡  𝑜𝑟 𝜏 >  𝜏𝑎𝑐
𝑒𝑛𝑑

𝑃𝑎𝑐
𝑖𝑛(𝜏),    𝜏𝑎𝑐

𝑠𝑡𝑎𝑟𝑡 ≤ 𝜏 ≤  𝜏𝑎𝑐
𝑒𝑛𝑑  

 (28) 

𝑃𝑎𝑐
𝑖𝑛(𝜏) = 𝑈𝑎𝑐(𝜏) ⋅ 𝑃𝑎𝑐

𝑜𝑛 + [1 − 𝑈𝑎𝑐(𝜏)] ∙ 𝑃𝑎𝑐
𝑜𝑓𝑓

 (29) 

𝑈𝑎𝑐(𝜏) =

{
 
 

 
 0,   𝑇𝑎(𝜏) < 𝑇𝑎𝑐

𝑠𝑒𝑡(𝜏) −
𝛿𝑎𝑐
2

1, 𝑇𝑎(𝜏) > 𝑇𝑎𝑐
𝑠𝑒𝑡(𝜏) +

𝛿𝑎𝑐
2

𝑈𝑎𝑐(𝜏 − 1), 𝑇𝑎𝑐
𝑠𝑒𝑡(𝜏) −

𝛿𝑎𝑐
2
≤ 𝑇𝑎(𝜏) ≤ 𝑇𝑎𝑐

𝑠𝑒𝑡(𝜏) +
𝛿𝑎𝑐
2

 (30) 

𝑇𝑎(𝜏 + 1) = 𝑘1𝑇𝑎(𝜏) + 𝑘2𝑇𝑒𝑛(𝜏) ± 𝑘3𝑃𝑎𝑐
𝑖𝑛(𝜏)𝐸𝐼𝑅(𝜏) + 𝑘4𝐺𝑠(𝜏) + 𝑘5 (31) 

𝐸𝐼𝑅(𝜏) = [0.0193 ⋅ 𝑇𝑒𝑛(𝜏) + 0.3259] ∙ 𝐸𝐼𝑅𝑛𝑜𝑚 (32) 

where  𝑃𝑎𝑐
𝑖𝑛 is AC’s operating power; 𝜏𝑎𝑐

𝑠𝑡𝑎𝑟𝑡 and 𝜏𝑎𝑐
𝑒𝑛𝑑  

are the turn-on moment and turn-off moment of ACs; 

𝑃𝑎𝑐
𝑜𝑛 and 𝑃𝑎𝑐

𝑜𝑓𝑓
 are the AC’s operating power in ON and 

OFF states, respectively; 𝑈𝑎𝑐  is a binary variable that 1 
denotes that ACs operate in ON state and 0 denotes that 
ACs operate in OFF state; 𝑇𝑎  is the indoor air 
temperature; 𝑇𝑎𝑐

𝑠𝑒𝑡  is AC’s temperature setpoint; 𝛿𝑎𝑐  

is the thermostat dead-band; 𝑘1, 𝑘2, 𝑘3, 𝑘4, and 𝑘5 
are model parameters; 𝑇𝑒𝑛 is the outdoor temperature; 
𝐺𝑠 is the solar radiation; 𝐸𝐼𝑅 is AC’s energy input ratio 
and can be calculated by Eq. (32) [12].  

Similar to the model of ACs, the model of electric 
resistance water heaters (EWHs) was expressed by Eqs. 
(33)-(36). 
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𝑃𝑒𝑤ℎ(𝜏) = {
0,     𝜏 < 𝜏𝑒𝑤ℎ

𝑠𝑡𝑎𝑟𝑡  𝑜𝑟 𝜏 >  𝜏𝑒𝑤ℎ
𝑒𝑛𝑑

𝑃𝑒𝑤ℎ
𝑖𝑛 (𝜏),    𝜏𝑒𝑤ℎ

𝑠𝑡𝑎𝑟𝑡 ≤ 𝜏 ≤  𝜏𝑒𝑤ℎ
𝑒𝑛𝑑  

 (33) 

𝑃𝑒𝑤ℎ
𝑖𝑛 (𝜏) = 𝑈𝑒𝑤ℎ(𝜏) ⋅ 𝑃𝑒𝑤ℎ

𝑜𝑛  (34) 

𝑈𝑒𝑤ℎ(𝜏) = {

0,   𝑇𝑤(𝜏) ≥ 𝑇𝑒𝑤ℎ
𝑠𝑒𝑡 (𝜏)

1, 𝑇𝑤(𝜏) ≤ 𝑇𝑒𝑤ℎ
𝑠𝑒𝑡 (𝜏) − 𝛿𝑒𝑤ℎ

𝑈𝑒𝑤ℎ(𝜏 − 1), 𝑇𝑒𝑤ℎ
𝑠𝑒𝑡 (𝜏) − 𝛿𝑒𝑤ℎ < 𝑇𝑤(𝜏) < 𝑇𝑒𝑤ℎ

𝑠𝑒𝑡 (𝜏)

 (35) 

𝑇𝑤(𝜏 + 1) = 𝑘1
′𝑇𝑤(𝜏) + 𝑘2

′𝑇𝑎𝑚(𝜏) + 𝑘3
′𝑃𝑒𝑤ℎ

𝑖𝑛 (𝜏) + 𝑘4
′𝑃𝑢𝑠𝑒(𝜏) + 𝑘5

′  (36) 

where 𝑃𝑒𝑤ℎ
𝑖𝑛  is the EWH’s operating power; 𝜏𝑒𝑤ℎ

𝑠𝑡𝑎𝑟𝑡 and 

𝜏𝑒𝑤ℎ
𝑒𝑛𝑑  are the turn-on moment and turn-off moment of 

EWHs; 𝑃𝑒𝑤ℎ
𝑜𝑛  is the EWH’s operating power in ON state; 

𝑈𝑒𝑤ℎ  is a binary variable that 1 denotes that EWHs 
operate in ON state and 0 represents that EWHs operate 

in OFF state; 𝑇𝑤 is the hot water temperature; 𝑇𝑒𝑤ℎ
𝑠𝑒𝑡  is 

EWH’s temperature setpoint; 𝛿𝑒𝑤ℎ  is the thermostat 
dead-band; 𝑘1

′ , 𝑘2
′ , 𝑘3

′ , 𝑘4
′ , and 𝑘5

′  are model 
parameters; 𝑇𝑎𝑚  is the ambient temperature; 𝑃𝑢𝑠𝑒  is 
the heat loss caused by hot water consumptions. 

In addition to the TCLs, the model of deferrable loads 
was formulated by Eqs. (37) and (38), according to their 
operation characteristics.  

𝑃𝑠ℎ𝑖𝑓𝑡
𝑖𝑛 (𝜏) =

{
 
 

 
 𝑃 𝑠ℎ𝑖𝑓𝑡

𝑖,1 ,   𝜏 ∈ [𝜏𝑠ℎ𝑖𝑓𝑡
𝑠𝑡𝑎𝑟𝑡 , 𝜏𝑠ℎ𝑖𝑓𝑡

𝑠𝑡𝑎𝑟𝑡 + 𝛥𝜏𝑠ℎ𝑖𝑓𝑡
𝑖,1 ]

𝑃 𝑠ℎ𝑖𝑓𝑡
𝑖,2 ,   𝜏 ∈ [𝜏𝑠ℎ𝑖𝑓𝑡

𝑠𝑡𝑎𝑟𝑡 + 𝛥𝜏𝑠ℎ𝑖𝑓𝑡
𝑖,1 , 𝜏𝑠ℎ𝑖𝑓𝑡

𝑠𝑡𝑎𝑟𝑡 + 𝛥𝜏𝑠ℎ𝑖𝑓𝑡
𝑖,1 + 𝛥𝜏𝑠ℎ𝑖𝑓𝑡

𝑖,2 ]

……

𝑃 𝑠ℎ𝑖𝑓𝑡
𝑖,𝑚 ,   𝜏 ∈ [𝜏𝑠ℎ𝑖𝑓𝑡

𝑠𝑡𝑎𝑟𝑡 + 𝛥𝜏𝑠ℎ𝑖𝑓𝑡
𝑖,1 +⋯+ 𝛥𝜏𝑠ℎ𝑖𝑓𝑡

𝑖,𝑚−1, 𝜏𝑠ℎ𝑖𝑓𝑡
𝑠𝑡𝑎𝑟𝑡 + 𝛥𝜏𝑠ℎ𝑖𝑓𝑡

𝑖,1 +⋯+ 𝛥𝜏𝑠ℎ𝑖𝑓𝑡
𝑖,𝑚 ]

0,   other

 (37) 

∆𝜏𝑠ℎ𝑖𝑓𝑡
𝑖 = ∑ 𝛥𝜏𝑠ℎ𝑖𝑓𝑡

𝑖,𝑚

𝑀

𝑚=1

 (38) 

where 𝑃𝑠ℎ𝑖𝑓𝑡
𝑖𝑛  is the operating power of deferrable 

loads; 𝑃 𝑠ℎ𝑖𝑓𝑡
𝑖,𝑚  is deferrable load’s operating power at 

operation stage m with operation mode i; 𝛥𝜏𝑠ℎ𝑖𝑓𝑡
𝑖,𝑚  is the 

duration of operation stage m with operation mode i; 

𝜏𝑠ℎ𝑖𝑓𝑡
𝑠𝑡𝑎𝑟𝑡  is the time that deferrable loads start to work; 

∆𝜏𝑠ℎ𝑖𝑓𝑡
𝑖  is the total duration of the operation mode i. 

Additionally, the power profiles of inflexible loads 
were predicted using the persistence forecast method 
[13]. This method involves calculating the average daily 
power profiles of inflexible loads from the past few days, 
which then serves as the forecasted power profiles of 
inflexible loads. Additionally, separate datasets were 
considered for weekdays and weekends, as the power 
consumption of inflexible loads varies between these 
two categories. 

2.3 Solution methods 

After the optimal model was formulated, the 
reference-point-based Non-dominated Sorting Genetic 
Algorithm (NSGA-III) [14] was employed to solve the model 
with the  Pareto solution set obtained. The Technique for 
Order Preference by Similarity to an Ideal Solution (TOPSIS) 
approach was used to pick out the final solution from the 
Pareto solution set. The details processes of the solution 
methods are presented in Fig. 2. 
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Fig. 2. Processes of the solution method. 

3. CASE STUDY 
A typical rural family in hot-summer and cold-winter 

zone of China was chosen in this study. The operation 
data of the household flexible loads, including two room 
ACs, an EWH, a washing machine, and a dishwasher, 
were monitored with the power consumption profiles of 
the household also measured. The pilot test began in July 
2022 and lasted for two months. The monitored data was 
used to develop the flexible load models and identify 
occupant behaviors. Based on these identified models, 
the day-ahead optimal scheduling was performed.  

3.1 Input data 

Based on the monitored operation data of the 
flexible loads, occupant behaviors were identified by the 
statistical analysis methods, as listed in Table 1. 
Furthermore, the ambient parameters and electricity 
tariffs are presented in Fig. 3(a) and Fig. 3(b), 
respectively. The monitored power profiles of inflexible 
loads and the average power profiles of inflexible loads 
are illustrated in Fig. 3(c). 

Table 1. Occupant behaviors of flexible loads. 

Flexible 
loads 

[𝑇𝑡𝑐𝑙
𝑠𝑒𝑡,𝑚𝑖𝑛, 𝑇𝑡𝑐𝑙

𝑠𝑒𝑡,𝑚𝑎𝑥] [𝜏𝑠ℎ𝑖𝑓𝑡
𝑠𝑡𝑎𝑟𝑡,𝑚𝑖𝑛, 𝜏𝑠ℎ𝑖𝑓𝑡

𝑠𝑡𝑎𝑟𝑡,𝑚𝑎𝑥] 

AC1 AC2 EWH Washing machines Dishwashers 

Values [22, 28 ºC] [24, 29 ºC] [60, 70 ºC] [5:00, 8:00] [19:00, 6:00] 

 

Fig. 3. (a) Environment data; (b) Electricity tariffs; (c) 
The monitored electricity profiles of inflexible loads and 

the average power profiles of inflexible loads. 

3.2 Results and discussion 

The demand-side management strategy of the PV-
battery-flexible load system was discussed under various 

operation strategies in this section. Two cases were set 
with the details described below. 
⚫ Case 1: The PV-battery-flexible load system 

operates under a traditional rule-based operation 
strategy, namely maximizing self-consumption 
(MSC) strategy. This case was used as a baseline. 

⚫ Case 2: The PV-battery-flexible load system 
operates under the optimal strategy, which was 
obtained via solving the developed many-objective 
optimal models. 

3.2.1 Demand-side management of the PV-
battery-flexible load system under the rule-
based operation strategy 

The operation of the PV-battery-flexible load system 
under the MSC strategy is illustrated in Fig. 4. The battery 
charges during the periods from 7:30 to 11:00, when the 
PV generation is sufficient, along with SOC increasing. 
When the SOC reaches the maximum, the battery stops 
charging with the surplus PV generation fed into the 



7 
 

utility grids. The electricity stored in the battery is 
released during the periods from 18:50 to 22:00, when 
the PV generation cannot meet household electricity 
loads. After all the stored electricity is discharged, 
households purchase electricity from the utility grid to 
satisfy the electricity demands. In addition to the battery, 
the flexible loads operate at normal conditions. AC1 

operates with the temperature setpoint setting at 26 º

C, while AC2 temperature setpoint sets at 25 ºC. the 
EWH operates with the temperature setpoint keeping at 

65 ºC. The WM and the dishwasher are turned on at 
6:30 and 19:00, respectively. Under the MSC operation 
strategy, the daily operation costs, peak-valley 
difference of net power profiles, SCR, SSR, and CO2 
emissions are 5.46 CNY, 5782.72 W, 53.06%, 63.17%, and 
11.72 kg CO2. 

 

Fig. 4. Operation of the PV-battery-flexible load system 
under the MSC strategy. 

3.2.2 Demand-side management of the PV-
battery-flexible load system under the 
optimal strategy 

The operation of the TCLs in the PV-battery-flexible 
load system under the optimal strategy is displayed in 
Fig. 5. It is observed that the temperature setpoints of 
TCLs are adjusted continuously to maximize the 
optimization objectives. However, the temperature 
setpoints always keep within the thermal comfort of 
occupants. Moreover, the WM and the dishwasher are 
switched on at 6:59 and 0:44, respectively. The operation 
of the PV-battery-flexible load system under the optimal 
strategy is presented in Fig. 6. The charging/discharging 
power of the battery is managed. It charges in the 
daytime, when the PV generation is sufficient, and the 
surplus PV generation is fed into the utility grids. The 
battery charges at night, when there is no PV generation. 
Almost all the peak loads during the high price periods 
can be met by the battery. The loads after 23:00 are 
satisfied by the utility grid, owing to the fact that the 
electricity stored in the battery is consumed. Under the 
optimal operation strategy, the daily operation costs, 
peak-valley difference of net power profiles, SCR, SSR, 

and CO2 emissions are 3.36 CNY, 4771.04 W, 55.91%, 
68.80%, and 9.61 kg CO2. However, user’s dissatisfaction 
is raised to 0.16 due to the adjustment of TCLs’ 
temperature setpoints and the shifting of deferrable 
loads. 

 

Fig. 5. Operation of flexible loads in the PV-battery-
flexible load system under the optimal strategy. 

 

Fig. 6. Operation of the PV-battery-flexible load system 
under the optimal strategy. 

3.2.3 Comparative analysis of the demand-side 
management of PV-battery-flexible load 
system under the rule-based strategy and 
the optimal strategy 

A comparative analysis on the performance of the 
PV-battery-system was conducted under diverse 
operation strategies, as illustrated in Fig. 7. It is observed 
that the optimal operation strategy performs better in 
daily operation costs, peak-valley difference, SCR, SSR, 
and CO2 emissions aspects than the MSC strategy. The 
daily operation costs, CO2 emissions, and the peak-valley 
difference are decreased by 38.4%, 18%, and 17.5% 
under the optimal strategy, when compared with the 
MSC operation strategy. The reasons are that the 
electricity consumption of TCLs is decreased under the 
optimal strategy, thus the electricity imported from the 
utility grids is reduced, contributing to a reduction of CO2 
emissions. Moreover, since some peak loads are shifted 
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to valley-price periods, which can be found via 
comparing Fig. 4 and Fig. 6, the electricity bills are 
decreased. Furthermore, the optimization of TCLs’ 
temperature setpoint, deferrable loads’ working time, 
and the charging/discharging power contributes to the 
peak cutting and valley filling. Hence, the peak-valley 
difference is smaller under the optimal strategy. 
Compared with the MSC strategy, the SCR and SSR under 
the optimal strategy are increased by 5.4% and 8.9%, 
respectively. More loads are shifted to the daytime when 
PV generation is sufficient under the optimal strategy. 
Therefore, the PV generation consumption is increased 
under the optimal strategy. However, user’s 
dissatisfaction is raised to 0.16 under the optimal 
strategy, which is caused by the adjustment of TCLs 
temperature setpoint and the shifting of deferrable 
loads’ working time. 

 

Fig. 7. Comparison of the system performance under 
various operation strategies. 

4. CONCLUSIONS 
A many-objective optimal model was developed for 

the day-ahead optimal scheduling of residential PV-
battery-flexible load systems, with six optimization 
objectives relevant to the benefits of diverse 
stakeholders considered. A case study was conducted to 
validate the many-objective optimal model based on the 
monitored real-life operation data. Comparative studies 
about the operation of the system under the optimal 
strategy and the MSC strategy was also conducted. 
Results indicate that the daily operation costs, CO2 
emissions, and the peak-valley difference are decreased 
by 38.4%, 18%, and 17.5% under the optimal strategy 
with the SCR and SSR increasing by 5.4% and 8.9%, when 
compared with the MSC operation strategy. In our future 
work, the real-time optimal scheduling of residential PV-
battery-flexible load system will be carried out. 

ACKNOWLEDGEMENT 
This work was financially supported by the National 

Key R&D Program of China (2022YFB4201003), the 
National Natural Science Foundation of China 
(52278104), and the Science and Technology Program of 
Ministry of Housing and Urban-Rural Development of the 
PRC (2020-K-165). 

DECLARATION OF INTEREST STATEMENT 
The authors declare that they have no known 

competing financial interests or personal relationships 
that could have appeared to influence the work reported 
in this paper. All authors read and approved the final 
manuscript. 

REFERENCE 
[1] Ouedraogo KE, Ekim PO, Demirok E. Feasibility of 
low-cost energy management system using embedded 
optimization for PV and battery storage assisted 
residential buildings. Energy 2023;271. 
https://doi.org/10.1016/j.energy.2023.126922. 
[2] Chen Z, Chen Y, He R, Liu J, Gao M, Zhang L. Multi-
objective residential load scheduling approach for 
demand response in smart grid. Sustain Cities Soc 
2022;76. https://doi.org/10.1016/j.scs.2021.103530. 
[3] Zou B, Peng J, Yin R, Luo Z, Song J, Ma T, et al. Energy 
management of the grid-connected residential 
photovoltaic-battery system using model predictive 
control coupled with dynamic programming. Energy 
Build 2023;279:112712. 
https://doi.org/10.1016/j.enbuild.2022.112712. 
[4] Killian M, Zauner M, Kozek M. Comprehensive smart 
home energy management system using mixed-integer 
quadratic-programming. Appl Energy 2018;222:662–72. 
https://doi.org/10.1016/j.apenergy.2018.03.179. 
[5] Yang F, Xia X. Techno-economic and environmental 
optimization of a household photovoltaic-battery hybrid 
power system within demand side management. Renew 
Energy 2017;108:132–43. 
https://doi.org/10.1016/j.renene.2017.02.054. 
[6] Zhi Y, Yang X. Scenario-based multi-objective 
optimization strategy for rural PV-battery systems. Appl 
Energy 2023;345:121314. 
https://doi.org/10.1016/j.apenergy.2023.121314. 
[7] Wang Z, Sun M, Gao C, Wang X, Chris B. A new 
interactive real-time pricing mechanism of demand 
response based on an evaluation model. Appl Energy 
2021;295:117052. 
https://doi.org/https://doi.org/10.1016/j.apenergy.202
1.117052. 



9 
 

[8] Wang M, Peng J, Luo Y, Shen Z, Yang H. Comparison 
of different simplistic prediction models for forecasting 
PV power output: Assessment with experimental 
measurements. Energy 2021;224. 
https://doi.org/10.1016/j.energy.2021.120162. 
[9] Zou B, Peng J, Li S, Li Y, Yan J, Yang H. Comparative 
study of the dynamic programming-based and rule-
based operation strategies for grid-connected PV-
battery systems of office buildings. Appl Energy 
2022;305. 
https://doi.org/10.1016/j.apenergy.2021.117875. 
[10] Mulleriyawage UGK, Shen WX. Optimally sizing of 
battery energy storage capacity by operational 
optimization of residential PV-Battery systems: An 
Australian household case study. Renew Energy 
2020;160:852–64. 
https://doi.org/10.1016/j.renene.2020.07.022. 
[11] Jin X, Baker K, Christensen D, Isley S. Foresee: A 
user-centric home energy management system for 
energy efficiency and demand response. Appl Energy 
2017;205:1583–95. 
https://doi.org/10.1016/j.apenergy.2017.08.166. 
[12] Hu M, Xiao F. Investigation of the demand response 
potentials of residential air conditioners using grey-box 
room thermal model. Appl Energy 2017;207:324–35. 
https://doi.org/10.1016/j.apenergy.2017.05.099. 
[13] Pascual J, Arcos-Aviles D, Ursúa A, Sanchis P, 
Marroyo L. Energy management for an electro-thermal 
renewable–based residential microgrid with energy 
balance forecasting and demand side management. 
Appl Energy 2021;295. 
https://doi.org/10.1016/j.apenergy.2021.117062. 
[14] Deb K, Jain H. An evolutionary many-objective 
optimization algorithm using reference-point-based 
nondominated sorting approach, Part I: Solving 
problems with box constraints. IEEE Trans Evol Comput 
2014;18:577–601. 
https://doi.org/10.1109/TEVC.2013.2281535. 
 


