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ABSTRACT
Given the escalating carbon emission crisis, there

is an urgent need for large-scale adoption of renewable
energy generation to replace traditional fossil fuel-
based energy generation for a smooth energy
transition. In this regard, distributed photovoltaic
power generation plays a crucial role. Predicting the GHI
in advance to predict the power of photovoltaic power
generation has become one of the methods to solve the
grid-connected stability in recent years, which enables
the grid staff to dispatch and plan in advance through
the forecast results, reduce fluctuations, and maintain
grid stability. In this study, we present a deep learning-
based method to assess photovoltaic output potential
by solar irradiance forecasting and rooftop
segmentation. First, we utilize a multivariate input
Transformer model that incorporates various data to
predict GHI; Second, using remote sensing images to
train Swin-Transformer to identify the potential area of
rooftop photovoltaic panel; Finally, the potential
assessment was achieved by calculating the array
output through the GHI and area data we generated in
the first two parts. Our evaluation methodology and
results provide technical support for the transition of
energy structure.
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NONMENCLATURE
Abbreviations

GHI
DNI
POA
LSTM

Global Horizontal Irradiance
Direct Normal Irradiance
Plane of Array Irradiance
Long Short-Term Memory

Symbols

m
m2

Meter
Square meter

1. INTRODUCTION
As global energy demands continue to rise and

environmental concerns escalate, the development and
utilization of clean energy sources have become
imperative. Photovoltaic power generation, as a
renewable and clean energy source, offers advantages
such as pollution-free and sustainable energy
production, making it a crucial role in the energy
transition [1]. GHI is a pivotal indicator of photovoltaic
potential, and its accurate prediction is vital for
effective planning and management of photovoltaic
systems. Rooftop photovoltaics, as a cornerstone of
distributed photovoltaic systems, have the capability to
fully utilize rooftop spaces in established urban or
community settings. By installing photovoltaic panels on
rooftops, solar power generation is enabled, maximizing
the utilization of resources. In this study, we employed
a variant of the traditional Transformer model [2] to
achieve multi-variable input single-variable output
prediction of GHI in the Christchurch area. Additionally,
we utilized the Swin-Transformer model for semantic
segmentation of remote sensing imagery in the
Christchurch region, identifying rooftop areas. By
combining these approaches, we finished an
assessment of the photovoltaic power generation
potential in the Christchurch area. The framework of
our study is illustrated in Figure 1.
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2. RELATED WORK:
Regarding the forecasting of the GHI, recent

research has utilized deep learning-based neural
network models [3,4] and advanced time-series models
such as LSTM model [5], and Hybrid-LSTM model [6-7],
which have demonstrated promising results and
facilitated the application of more efficient and
innovative models.

As for the assessment of the photovoltaic potential,
Some scholars offer a target segmentation method
based on Image Grayscale Threshold using remote
sensing images to recognize the rooftop area and
realize the regional rooftop photovoltaic potential [8].
Researchers have propose a high-resolution remote
sensing image building extraction method based on the
DeepLabv3+ semantic segmentation model, and a set of
assessment methods and steps for the development
potential of building roof photovoltaics [9].

3. METHODOLOGY

3.1 forecasting

In comparison of CNN and LSTM models, the
Transformer model offers several advantages, such as
parallel processing and global information capture
ability. Traditional transformer model consist of
Encoder and Decoder stacks, innovatively utilizing self-
attention mechanisms, enabling it consider the weights
of all input variables and the correlations between input
variables[10].

As a task for the unsupervised training of our model
we consider the auto-regressive task of de-noising the
input: specifically, we set part of the input to 0 and ask
the model to predict the masked values. We simply use
different patterns of masking to achieve different
objectives, while the rest of the model and setup
remain the same. Using a mask which conceals the last
part of target variable to perform forecasting. In this
study, We employed a multivariate input Transformer

model in our study, where GHI, DNI, air temperature,
relative humidity, wind speed, and solar zenith angle
were used as inputs for training. By masking out the GHI
values and having the model predict the masked
regions, we finally achieved GHI prediction.

3.2 segmentation

In order to attain more accurate results for roof
area segmentation, we employed the Swin-Transformer
as the backbone network, as opposed to the traditional
convolutional models used in previous experiments, for
the purpose of extracting features from different scales
of the input image. The advantage of using the Swin-
Transformer model, in contrast to traditional CNN-
based image segmentation models, lies in its capability
to confine self-attention computations within non-
overlapping local windows, while also allowing these
windows to maintain connection and movement across
the image. This hierarchical structure facilitates
modeling at varying scales, exhibiting higher flexibility,
and entails linear computational complexity with
respect to image size, thereby enhancing the overall
system's generalization capacity and efficiency. After
fusing image features from different scales, we
proceeded to train the Swin-Transformer model to
conduct semantic segmentation at the pixel level.
During training, each pixel is classified into one of two
categories: building and others.

3.3 potential assessment

By considering the photovoltaic array's rated
capacity and the coefficient indicating the efficiency
change with cell temperature, we can obtain the output
of the photovoltaic system. First, through the identified
rooftop area, we can assume the photovoltaic array
capacity. After setting the capacity of the photovoltaic
array. We calculate the time-series local solar position
list and surface tilt and azimuth angles for the tracker
through the latitude and longitude of the assessment
location. Second, in conjunction with the predicted
solar irradiance data, we can compute the photovoltaic

Figure 1.The framework of our deep learning-based photovoltaic output potential assessment method
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module temperature variation curve. This process
ultimately leads to the calculation of the predicted
output values of the photovoltaic array. In this study,
we set the panel angle to 43 degrees, facing towards
the north direction.

4. EXPERIMENTS
We utilized a three-year dataset from Christchurch,

spanning from January 1, 2016, to December 31, 2018,
at 60-minute intervals. The input variables consisted of
environmental temperature, relative humidity, wind
speed, DNI, GHI, and solar zenith angle. Aiming to
predict a single variable, the GHI.

In this study, we utilized remote sensing images
from within Christchurch. These images were
segmented into 512x512 resolution patches and fed
into the Swin-Transformer model for training. The
objective was to identify and differentiate between
building rooftops and other elements within a 1.4km x
1.4km area in Christchurch.

5. RESULTS
In the forecasting task, we use Mean Absolute Error

(MAE) and Root Mean Square Error (RMSE) to evaluate
the model. MAE is the average of the absolute
differences between predicted values and actual
observations. It measures the average deviation
between model predictions and actual observations.
The formula is as follows:

��� =
1
� �=1

�
�� − �� ��

Here, � is the number of samples, �� ​ represents
the actual observation of the � th sample, and �� �
represents the model's predicted value.

RMSE is the square root of the average of the
squared differences between predicted values and
actual observations. Compared to MAE, RMSE is more
sensitive to larger errors as it squares the errors before
averaging. The formula is as follows:
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1
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Similarly, � is the number of samples, ​ ��
represents the actual observation of the � th sample,
and �� � represents the model's predicted value.

The result is shown as Figure 2. Comparing to LSTM
model, Multivariate Transformer have a better
performance, Compared to LSTM, MAE has decreased

by 2.86 and RMSE has decreased by 15.74, indicating
the achievement of higher prediction accuracy.

Figure 2．Prediction for one week.

��� ����

Transformer 17.22 29.25

LSTM 20.08 44.99

Table 1. Results of Solar Forecasting

As for the segmentation task, The recognition
results are illustrated in Figure 3. The total rooftop area
can be calculated by counting the number of recognized
pixels. Each pixel represents an area of 0.07m × 0.07m =
0.0049m². With a total count of 100,697,959 recognized
pixels, the total area can be calculated as 0.0049 ×
100697959 = 493,240m².

Figure 3. Comparison between segmentation results and the
original image.

In the potential assessment task, we assume every
10 square meters of photovoltaic panels can achieve a
power output of 1 kW. All the rooftop area have been
installed photovoltaic panels. The total output power is
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49324kW. Every 1kW array have a temperature
coefficient of -0.4%/°C. Figure 3. Shows the photovoltaic
potential of the selected area in 2018. Calculated POA
and Production results are illustrated in Figure 4. The
power output results are shown in Figure 5.

Figure 4. POA and production results calculated based on the
predicted outcomes for each month.

Figure 5. Predicted photovoltaic generation potential for
Christchurch in 2018.

6. CONCLUSIONS
In this study, we initially employed a multivariate-

input Transformer model to predict the GHI values for
Christchurch in the year 2018. Subsequently, we utilized
the Swin-Transformer model for semantic segmentation
of Christchurch's urban remote sensing images,
enabling the identification of roof areas suitable for
photovoltaic panel installation. By combining these
predictions, we calculated the photovoltaic generation
potential for Christchurch. We believe that this study
will offer robust support to the solar energy industry,
providing technical guidance for the transition from
conventional fossil fuels to renewable energy sources,
and facilitating the process of energy transformation. In

the future, we will design and develop more precise
prediction and segmentation models to achieve more
accurate assessment of photovoltaic generation
potential.
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