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ABSTRACT 
 Renewable energy continues to rise, with 
supercritical water gasification (SCWG) emerging as a 
potential biofuel production technique. Conventional 
approaches for estimating CH4 and H2 generation in 
complex systems frequently fail due to the complicated 
and dynamic nature of these processes. Machine 
learning (ML) has emerged as a disruptive technology in 
various industries, including energy, where it is used to 
optimize operations and improve prediction accuracy. 
Conventional techniques lack the versatility and 
scalability of ML models, resulting in less accurate and 
efficient prediction capabilities. This gap emphasizes the 
importance of incorporating machine learning into the 
energy domain, notably for optimization and prediction 
in SCWG processes. Furthermore, for any machine 
learning model, determining the appropriate 
hyperparameter setting has a direct and significant 
influence on its performance. In this study, we 
investigate the influence of three distinct types of 
hyperparameter optimization techniques on CH4 and H2 
production prediction based on supercritical water 
gasification. Grid Search Optimization, Random Search 
Optimization, and Bayesian Optimization were analyzed 
utilizing six machine learning models: Ridge Lasso, Elastic 
Net, Decision Tree, Random Forest, and XGBoost, as well 
as two ensemble models: linear-based and tree-based 
models. The dataset from supercritical water gasification 
of Yimin lignite was used based on three evaluation 
metrics: Mean Absolute Error (MAE), Root Mean 
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Squared Error (RMSE), and Coefficient of Determination 
(R2). The results were evaluated based on 5-fold cross-
validation and results show that the Random Forest 
stood out with an R2 of 0.995, RMSE of 0.109, and MAE 
of 0.085 for the CH4 production prediction while 
recording an R2 of 1.00, RMSE of 0.112 and MAE of 0.088 
for H2 production prediction. The analysis carried out in 
this study shows that the choice of optimization 
technique does not significantly impact the performance 
of the deployed models, which indicates that the 
hyperparameter space is relatively well-behaved for this 
CH4 and H2 Production Prediction based on Supercritical 
Water Gasification, and thus even simpler optimization 
strategies like Random Search can perform nearly as well 
as more sophisticated ones like Bayesian Optimization. 
The result implies that if computation time or resources 
are a factor, Random Search would be a more efficient 
approach without a significant trade-off in model 
performance. 
 
Keywords: Hyperparameter Optimization, Supercritical 
Water Gasification, Hydrogen Production, Methane 
Production, Machine Learning  
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MAE Mean Absolute Error 
RMSE Root Mean Squared Error 
R2 Coefficient Of Determination 
SCWFB Supercritical Water Fluidized Bed 
CO Carbon Monoxide 
CO2 Carbon Dioxide 
SCW Supercritical Water 
GS Grid Search 
RS Random Search 
BO Bayesian Optimization 
MM Millimeter 
MPa Megapascal 
RPM Revolutions Per Minute 
CE% Conversion Efficiency Percentage 
WT% Weight Percentage 
OC Degrees Celsius 

1. INTRODUCTION 
Gasification is a thermodynamic method that turns 

organic wastes such as coal and biomass into gaseous 
products such as CO, CO2, CH4, and H2 by reacting them 
with gasifying agents such as air, oxygen, steam, or 
supercritical water (SCW) at temperatures ranging from 
500 to 1400 degrees Celsius[1]. Supercritical water 
gasification (SCWG) is a new method for effectively 
converting wet biomass or organic wastes into methane 
or hydrogen-rich gaseous products[2][3]. However, 
SCWG boiler metals may be subjected to highly 
destructive attacks during the conversion of diverse 
sources of biomass. Coal gasification is a green and 
economical technique for producing energy, electricity, 
and chemicals with little greenhouse gas emissions[4]. It 
turns coal into natural gas by employing water, air, or 
oxygen as combustion agents. Synthetic gas is mostly 
made up of CO, CH4, H2, and other gases, with hydrogen 
being a major element[5][6]. Coal gasification is a key 
method for environmentally friendly coal consumption, 
providing benefits in electric power generation, 
hydrogen-rich syngas synthesis, and CO2 emission 
mitigation. 

Machine Learning (ML) techniques have transformed 
computerized models by incorporating them into various 
fields, ranging from meteorological assessment to 
medical diagnostics. The effectiveness of these models is 
determined by the ML technique, training techniques, 
regularization methods, and optimum hyperparameters. 
ML models include two types of parameters: model 
parameters, which are defined by the training dataset, 
and hyperparameters, which may be changed by the user 
before running the model. Hyperparameters include 
neural network weights, learning rates, and 

regularization and kernel parameters. Different ML 
techniques need distinct sets of hyperparameters, and 
the majority of models include hyperparameters. The 
approach for determining the ideal hyperparameter 
configuration for a given algorithm trained on a certain 
dataset is known as Hyperparameter Optimization. Once 
the hyperparameters have been established, the 
algorithm uses the data to learn the model's 
parameters[7]. 

In this paper, the role of hyperparameter 
optimizations in ML models for CH4 and H2 production 
prediction from Supercritical Water Gasification was 
investigated specifically Grid search (GS) optimization, 
Random search (RS) Optimization, and Bayesian 
optimization (BO). The results were validated using a 5-
fold cross-validation. 

2. RELATED WORKS  
Coal remains a crucial source of energy in 

contemporary society; however, traditional coal 
combustion methods have significantly degraded energy 
utilization quality and caused serious environmental 
pollution. Supercritical water gasification (SCWG) 
emerges as an effective technology for the clean and 
efficient transformation of coal, utilizing supercritical 
water to convert coal's hydrogen and carbon into H2 and 
CO2, thereby aligning with pollution control and CO2 
reduction goals[4]–[6][8]. Lu et al. successfully 
demonstrated a supercritical water fluidized bed 
(SCWFB) system for hydrogen production from biomass 
gasification using glucose and actual biomass under 
continuous operation at 873 K, showcasing its substantial 
advantages and promising potential[9]. Additionally, Li et 
al.[10] investigated the influence of key operational 
parameters like temperature and pressure on 
gasification within an SCWFB reactor, finding that higher 
temperatures favor hydrogen production, though 
pressure showed minimal effect. Further, Bei et al.[11] 
performed a numerical analysis on ethanol gasification, 
indicating significant impacts of wall temperature on the 
carbon gasification rate and yield. 

Recent advancements include the application of ML 
techniques to predict CH4 and H2 production via SCWG. 
Li et al.[12] developed an ML framework to predict 
syngas composition in SCWG systems, achieving high 
accuracy which aided in process optimization and 
catalyst selection to maximize H2 and minimize CO2 
production. Zhao et al.[13] utilized various ML models to 
enhance H2 yield from SCWG, finding that oxygen-rich 
feedstocks enhance H2 recovery. Furthermore, Sharma 
et al.[14] developed a model to identify optimal 
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gasification pathways for biomass energy, emphasizing 
ML's role in optimizing output while considering 
environmental and operational constraints. Dang et 
al.[15] focused on optimizing syngas production from 
steam gasification by analyzing various operating 
conditions and biomass compositions, highlighting the 
role of ML in enhancing process efficiency. Marcantonio 
et al.[16] integration of response surface methodology 
with kinetic modeling further illustrates how ML can 
enhance predictions and optimize processes in 
hydrogen-rich syngas production. 

Recent literature has explored hyperparameter 
optimization in ML, discussing its theoretical and 
practical aspects. for instance, Liu et al.[17] highlighted 
the importance of learning rate schedules, Yu et al.[18] 
provided an exhaustive guide on hyperparameter 
optimization techniques, and Kelterborn et al.[19] 
discussed optimization strategies including gradient 
descent and Newton’s method. Turner et al.'s[20] study 
from the Black-Box Optimization emphasized the efficacy 
of BO over RS, while Ali et al.[7] investigated algorithms 
for reducing computational complexity in ML, 
demonstrating the impact of different strategies on 
training efficiency. These studies collectively advance our 
understanding of both hyperparameter optimization and 
the application of ML in energy and environmental 
sciences, offering significant insights and tools applicable 
across various domains. 

3. MATERIAL AND METHODS 
This section presents the Analyzed models, deployed 

hyperparameter optimization techniques, Dataset and 
Data Augmentation, and evaluation metrics. 

3.1 Analyzed Models 

This paper investigated the effect of hyperparameter 
optimization in several ML models including three linear-
based models, three Tree-based models, and two 
ensemble models. The linear-based models include 
Ridge regression, Lasso Regression, and Elastic Net. 
Ridge regression is a model that favors mostly data that 
suffer from multicollinearity. Multicollinearity occurs 
when least squares estimates are unbiased, but their 
variances are large so they may be far from the actual 
value. Mathematically, ridge regression is illustrated 
thus; 

RSS = ∑ (yi

n

i=1
− ŷi)

2 = ∑ (yi

n

i=1
− Xi

Tβ)2 (1) 

Where, 𝑦𝑖  is the observed response, 𝑦̂𝑖  is the 
predicted response, 𝑋𝑖  is the feature vector for the 
𝑖𝑡ℎ observation, 𝛽  is the coefficient vector. Lasso 
regression is a type of linear regression that uses 

shrinkage (data values are shrunk towards a central 
point, like the mean). It is well-suited for models showing 
high levels of multicollinearity or when you want to 
automate certain parts of model selection, like variable 
selection/parameter elimination. Mathematically, the 
lasso is represented as thus; 

Lasso(β) =  ∑ (yi

n

i=1
− ∑ xij

p

j=1
βj)

2 +  λ ∑ |βj|
p

j=1
 (2) 

Where, 𝑦𝑖  is the observed output, 𝑥𝑖𝑗  is the 𝑗𝑡ℎ 

predictor for the 𝑖𝑡ℎ observation, 𝛽𝑗 is the coefficient 

for the 𝑗𝑡ℎ  predictor, 𝜆  is the regularization 
parameter controlling the amount of shrinkage applied 
to the coefficients. The model integration of the Lasso 
and Ridge principle is referred to as Elastic Net. It's 
particularly useful when there are correlations between 
parameters and is mathematically represented thus; 

Elastic Net =  ∑ (yi

n

i=1
− ∑ xij

p

j=1
βj)

2

+   λ1  ∑ |βj|
p

j=1
+   λ2  ∑ βj

2
p

j=1
 

(3) 

Where, 𝑦𝑖   is the observed output, 𝑥𝑖𝑗  is the 𝑗𝑡ℎ 

predictor for the 𝑖𝑡ℎ observation, 𝛽𝑗 is the coefficient 

for the 𝑗𝑡ℎ  predictor. 𝜆1 is the regularization 
parameter for the L1 penalty (similar to Lasso),  𝜆2  is 
the regularization parameter for the L2 penalty (similar 
to Ridge). 
For the tree models, the Decision tree, Random Forest, 
and XGBoost were considered. Decision trees are a 
supervised ML technique used for both classification and 
regression tasks. They work by recursively partitioning 
the feature space into regions, making decisions at each 
node based on the features of the data. 

Infor. Gain = Imp(Par) − ∑
Ni

N

nn 

i=1
× Imp(Chii) (4) 

Where infor. Means information, Imp(Par) means 
the Impurity of the parent node before the split, N 
means the parent node's total number of samples, Ni 
means ith child node number of samples, n denotes the 
number of child nodes, and Imp(Chii)  denotes the 

impurity of the ith child node after the split. Random Forest 
is an ensemble learning method that constructs a 
multitude of decision trees during training and outputs 
the mean/median (for regression) prediction of the 
individual trees. It's designed to address overfitting and 
improve accuracy compared to individual decision trees. 

The random forest prediction 𝑌̂𝑅𝐹(𝑥) for a new sample, 
𝑥 can be represented as: 

ŶRF(x) =
1

n
∑ Ŷi(x)

n

i=1
 (5) 

Where, 𝑌𝑖(𝑥) is the prediction of the 𝑖𝑡ℎ decision 
tree, 𝑛  is the total number of decision trees in the 
Random Forest ensemble. XGBoost is an ensemble 
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learning technique that utilizes the gradient boosting 
framework to produce highly accurate models. It 
constructs an ensemble of trees by iteratively adding 
new trees to minimize the objective function. At each 
iteration, it computes the gradient and the Hessian of the 
loss function concerning the current ensemble of trees, 
then fits a new tree to the negative gradient of the loss 
function. The mathematical representation of the 

prediction of the 𝑡𝑡ℎ tree in the ensemble can be 
represented as: 

ŷi
(t)

= ŷi
(t−1)

+ η. ht(xi) (6) 

Where, 𝑦̂𝑖
(𝑡)

 is the predicted value of the 𝑖𝑡ℎ 

instance by the 𝑡𝑡ℎ tree, 𝑦̂𝑖
(𝑡−1)

 is the predicted value 

of the 𝑖𝑡ℎ  instance by the ensemble of 𝑡 − 1  trees, 

ℎ𝑡(𝑥𝑖)  is the prediction of the 𝑡𝑡ℎ  tree for the 𝑡𝑡ℎ 
instance, 𝜂 is the learning rate, controlling the step size 
during the gradient descent optimization. The ensemble 
techniques involved the integration of linear-based 
models and tree-based models which are 
mathematically represented thus; Let 𝑀1, 𝑀2, and 𝑀3 
represent three individual linear or tress-based 
regression models, The final prediction of the ensemble 
is the weighted average of prediction from all the three 
models shown in Equation 7 where x  denotes the 

predictions of the models. 

 Ensemble =
1

3
(M1(x), M2(x), M3(x)) (7) 

3.2 Deployed Hyperparameter Optimization Techniques 

In the field of ML, the challenge of hyperparameter 
optimization or tuning involves identifying the best 
hyperparameters for a learning algorithm[21]. A 
hyperparameter, distinct from model parameters, is 
utilized to oversee the learning process. The objective of 
hyperparameter optimization is to determine a set of 
hyperparameters that produces an optimal model, 
minimizing a pre-specified loss function on a given set of 
independent data[22]. The function evaluates the loss 
associated with a set of hyperparameters[22]. To 
estimate the generalization performance of the model, 
cross-validation is commonly employed, enabling the 
selection of hyperparameter values that enhance 
performance[23]. This paper focuses on three primary 
methods of hyperparameter optimization: GS, RS, and 
BO. 

3.2.1 Grid Search (GS) Optimization 

GS involves a comprehensive search through a 
specified subset of the hyperparameter space, guided by 
a performance metric, usually determined by cross-

validation on the training data or through the 
assessment of a validation set[10][11]. Due to the 
potentially vast and complex space of hyperparameters, 
which may include continuous or unbounded 
parameters, setting limits and discretizing these values 
are necessary steps before applying GS. While GS is 
affected by the curse of dimensionality, it benefits from 
parallel execution since the evaluations of 
hyperparameter settings are independent[23].  

 

Fig. 1 Grid Search (GS) Sample 

Fig. 1 shows a GS methodology evaluating a 
combination of two distinct hyperparameters, examining 
10 distinct values for each. Consequently, this process 
tests a total of 100 combinations to ascertain the most 
effective one. The results are visually represented 
through contour lines, where blue contours denote areas 
of strong performance and red contours indicate areas 
with suboptimal outcomes. 

3.2.2 Random Search (RS) Optimization 

RS diverges from grid search by randomly selecting 
combinations of hyperparameters instead of 
exhaustively searching them. This approach applies to 
both discrete and continuous hyperparameter spaces 
and offers advantages in terms of exploration, 
particularly for hyperparameters that significantly 
impact model performance. RS can efficiently investigate 
a broader range of values and is noted for its simplicity 
and the ability to incorporate prior knowledge through 
the specified sampling distributions. It is also inherently 
parallel and remains a critical baseline for evaluating 
newer methods in hyperparameter optimization[9][12]. 
Fig. 2 shows a sample of RS across different combinations 
of values for two hyperparameters. 100 different 
random choices are evaluated. The green bars show that 
more individual values for each hyperparameter are 
considered compared to a GS. 
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Fig. 2 Random Search (RS) Sample 

3.2.3 Bayesian Optimization (BO) 

BO represents a sophisticated global optimization 
technique for optimizing noisy black-box functions. In 
hyperparameter optimization, BO constructs a 
probabilistic model that maps hyperparameter values to 
the objective measured on a validation set. By iteratively 
selecting promising hyperparameter configurations 
based on the current model and updating the model with 
new data, this method seeks to maximize the 
information about the function's behavior, especially the 
location of the optimum. It balances the exploration of 
uncertain outcomes with the exploitation of 
hyperparameters likely to be near the optimum. 
Empirically, BO has demonstrated superior performance 
in achieving more effective results with fewer 
evaluations compared to GS and RS [13][14]. 
designations. 

 

Fig. 3 Bayesian optimization (BO) 

As shown in Fig. 3, techniques like BO intelligently 
navigate the potential space of hyperparameter choices 
by determining the next combination to investigate, 
guided by insights gained from previous observations 
described. 

3.3 Dataset and Data Augmentation 

This study utilized the dataset provided by Hui et 
al.[29] for its experimental analysis. The experiment was 
conducted using a cylindrical micro quartz tube, 
measuring 200mm in length and 1.5mm in diameter, 
serving as the reactor. This reactor was capable of 
withstanding temperatures up to 1000°C and pressures 
up to 45MPa. A mixture of Yimin coal and deionized 
water was prepared and loaded into the reactor. The 
tube was subsequently melted and sealed using a 
hydrogen flame. Yimin lignite was pulverized into a fine 
powder, and the resultant gaseous by-products were 
subjected to analysis through gas chromatography and 
thermal conductivity detectors. High-purity argon served 
as the carrier gas. Additionally, a thermogravimetric 
analyzer was employed to measure the RPM parameter 
j. The efficiency of carbon gasification (CE) in supercritical 
water was assessed to monitor the gasification process. 
The experimental results, varying by temperature, 
concentration, and residence time, are presented in 
Table 1. 

3.4 Evaluation Metrics 

This paper uses three commonly used evaluation 
metrics for regression tasks: RMSE, R², and MAE. RMSE 
and MAE measure prediction accuracy, while R² indicates 
the model's ability to explain the dependent variable's 
variance. Mathematically, RMSE is a measure of the 
average deviation of predictions from actual values, 
calculated by dividing the square root of the average of 
the squared differences between predicted and actual 
values. 

RMSE = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1
 (8) 

R² measures the proportion of variance in the 
dependent variable predicted from the independent 
variables. 

R2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛
𝑖=1

 (9) 

MAE measures the average absolute difference 
between predicted and actual values. 

MAE =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1
 (10) 

4. RESULTS 
The correlation heatmap which shows the 

correlation coefficients between variables (variables 
related to the production of H2 and CH4) is presented in 
Fig. 4. It is observed that Temperature is highly positively 
correlated with CE% (Conversion Efficiency), H2 (the 
production of hydrogen), and CH4 (the production of 
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methane), with values of 0.87, 0.81, and 0.88, 
respectively indicating that as the temperature 
increases, these variables tend to increase as well. CE% 
has a very strong positive correlation with H2 and CH4, 
with correlation coefficients of 0.98 and 0.95, 
respectively indicating that better conversion efficiency 
is closely associated with higher production of both 
hydrogen and methane. H2 and CH4 are also strongly 
positively correlated with each other (0.88). This 
indicates a relationship where an increase in the 
production of one is associated with an increase in the 
production of the other. The Concentration(wt%) 
variable shows very little to no correlation with any other 
variables, as seen by the coefficients close to zero. 

 
Fig. 4 Correlation heatmap showing the relationship 

between variables in the dataset 

 

Fig. 5 Five-fold cross-validation techniques 

The five-fold cross-validation approach is used in this 
work to assess the performance of the various models, 
as shown in Fig. 5. It entails dividing the dataset into five 
equal parts, iterating over each fold, training the model 
on the training set, and assessing it on the test set. This 

approach lowers bias, gives variance insights, assures 
effective data utilization, and assesses model 
generalization. 

4.1 CH4 Production Prediction 

The GS Optimization Techniques results for CH4 
production prediction are shown in Table 2. The results 
show that Ridge is the best linear-based model with 
consistent performance across all metrics. Lasso has 
higher errors and lower R2 scores indicating its biases in 
capturing the complexity of the dataset as well as Ridge. 
Tree-based models have low errors and high R2 scores, 
but there may be concerns about overfitting due to their 
nature. The ensemble of linear-based models has better 
performance than Lasso and Elastic Net. However, the 
ensemble of tree-based models has higher errors and 
lower R2 scores. The best-performing models are 
Random Forest and XGBoost, which benefit from 
ensemble learning that combines multiple decision trees 
to improve performance and robustness. Ridge 
regression is the best linear-based model indicating its 
ability in dealing with multicollinearity by shrinking 
coefficients. For model selection, Random Forest is the 
best model due to its strong performance across all 
metrics and robustness against overfitting. 

RS optimization techniques for predicting CH4 
production using 5 K-folds are shown in Table 3. Ridge 
has moderate errors in prediction and a high R2 score, 
explaining a significant proportion of the data's variance. 
Lasso has higher errors and a lower R2 score, indicating 
that it may not capture the dataset's complexity 
effectively. Elastic Net shows a performance between 
Ridge and Lasso, combining features of both Ridge and 
Lasso regularization. Decision Tree exhibits lower errors 
and a high R2 score but is sensitive to the specific data it's 
trained on, leading to variance across different training 
sets. Random Forest has the lowest average RMSE and 
highest R2 scores, proving its robustness and 
performance in predicting CH4 production. XGBoost has 
a slightly higher RMSE and lower R2 but still performs 
well. In this paper, Random Forest remains the strongest 
model, indicating ensemble methods effectively reduce 
variance and bias in the dataset while Ridge Regression 
is the best among linear models. The BO techniques are 
used to evaluate the performance of various ML models 
across 5 K-folds as shown in Table 4. Linear-based 
models, such as Ridge and Decision Tree, show relatively 
low RMSE and MAE, with high R2 scores, indicating stable 
performance. Lasso and Elastic Net show higher RMSE 
and MAE, indicating they may not capture the dataset's 
complexity effectively. 
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Table 1. Statistical analysis of the deployed dataset 

 Temp Conc(wt%) Reside(secs) CE(%) CH4(mol/kg-1) H2(mol/kg-1) 

count 1000.000 1000.000 1000.000 1000.0000 1000.0000 1000.000 

mean 0.880353 0.589600 0.472230 0.503629 3.773400 6.95337 

Std 0.095676 0.330335 0.269607 0.197545 1.497359 5.17247 

Min 0.764706 0.200000 0.090682 0.231032 1.180000 0.75000 

25% 0.764706 0.200000 0.175541 0.323956 2.460000 2.73000 

50% 0.882353 0.600000 0.425957 0.508312 3.780000 5.67500 

75% 1.000000 1.000000 0.674709 0.614628 4.885000 9.59250 

Max 1.000000 1.000000 1.000000 1.000000 6.640000 22.50000 

Table 2. GS optimization techniques prediction for CH4 production 

Metrics K-Folds 

Linear Based Model Tree Based Model Ensemble 

Ridge Lasso 
Elastic 

Net 
Decision 

Tree 
Random 
Forest 

XGBoost 
Linear 

Models 
Tree 

Models 

RMSE 

1 0.261 0.435 0.346 0.177 0.120 0.117 0.150 0.325 
2 0.268 0.428 0.346 0.125 0.109 0.121 0.137 0.283 
3 0.295 0.449 0.370 0.120 0.113 0.171 0.156 0.335 
4 0.310 0.392 0.301 0.111 0.105 0.122 0.128 0.269 
5 0.291 0.423 0.348 0.108 0.106 0.119 0.132 0.286 

Average 0.285 0.425 0.342 0.128 0.111 0.130 0.141 0.300 

R2 

1 0.968 0.908 0.942 0.985 0.993 0.993 0.989 0.949 
2 0.969 0.922 0.949 0.993 0.995 0.994 0.992 0.966 
3 0.960 0.918 0.944 0.994 0.995 0.988 0.990 0.954 
4 0.960 0.926 0.956 0.994 0.995 0.993 0.992 0.965 
5 0.964 0.929 0.952 0.995 0.996 0.994 0.993 0.967 

Average 0.964 0.921 0.949 0.992 0.995 0.992 0.991 0.960 

MAE 

1 0.205 0.347 0.284 0.112 0.092 0.092 0.116 0.248 
2 0.205 0.347 0.290 0.098 0.085 0.094 0.111 0.223 
3 0.212 0.351 0.309 0.093 0.087 0.109 0.124 0.262 
4 0.241 0.308 0.249 0.087 0.085 0.094 0.107 0.204 
5 0.225 0.348 0.284 0.085 0.084 0.089 0.101 0.227 

Average 0.217 0.340 0.283 0.095 0.087 0.096 0.112 0.233 

 
Table 3. RS optimization techniques prediction for CH4 production 

Metrics K-Folds 

Linear Based Model Tree Based Model Ensemble 

Ridge Lasso 
Elastic 

Net 
Decision 

Tree 
Random 
Forest 

XGBoost 
Linear 

Models 
Tree 

Models 

RMSE 

1 0.260 0.435 0.349 0.137 0.118 0.125 0.152 0.326 
2 0.268 0.428 0.350 0.123 0.106 0.126 0.136 0.284 
3 0.295 0.449 0.366 0.125 0.112 0.175 0.159 0.333 
4 0.310 0.392 0.303 0.113 0.104 0.127 0.128 0.270 
5 0.291 0.423 0.351 0.123 0.106 0.118 0.134 0.286 

Average 0.285 0.425 0.344 0.124 0.109 0.134 0.142 0.300 

R2 

1 0.968 0.908 0.941 0.991 0.993 0.992 0.989 0.948 
2 0.969 0.922 0.948 0.994 0.995 0.993 0.992 0.965 
3 0.960 0.918 0.946 0.994 0.995 0.988 0.990 0.955 
4 0.960 0.926 0.956 0.994 0.995 0.992 0.992 0.965 
5 0.964 0.929 0.951 0.994 0.996 0.994 0.993 0.967 

Average 0.964 0.921 0.948 0.993 0.995 0.992 0.991 0.960 

MAE 

1 0.204 0.347 0.284 0.106 0.091 0.096 0.118 0.247 
2 0.205 0.347 0.291 0.099 0.083 0.095 0.110 0.224 
3 0.212 0.351 0.305 0.096 0.086 0.110 0.127 0.259 
4 0.241 0.308 0.247 0.090 0.084 0.099 0.105 0.202 
5 0.225 0.348 0.290 0.097 0.082 0.088 0.103 0.226 

Average 0.217 0.340 0.283 0.098 0.085 0.098 0.113 0.232 
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Decision Tree has low RMSE and MAE values, with high 
R2 scores, but may suffer from overfitting as a single 
model. Random Forest shows the best performance 
among all models, with the lowest RMSE and highest R2 
scores, indicating it effectively captures the dataset's 
patterns and generalizes well. 

XGBoost shows slightly higher RMSE and lower R2 
compared to Random Forest, an advanced gradient-
boosting algorithm. Key observations show that Random 
Forest maintains its superiority in performance for 
predicting CH4 production, while Decision Tree shows 
strong performance on individual folds but may be less 
preferable due to its susceptibility to overfitting. Ridge 
Regression outperforms other linear models, indicating 
beneficial regularization for the dataset. Bayesian 
Optimization has found good hyperparameter settings 
for these models, leading to strong predictive 
performances 

4.2 H2 Production Prediction 

Table 5 presents the results of a GS optimization for 
predicting H2 production using various ML models. Ridge 
showed moderately high RMSE and MAE values, while 
Lasso had the highest RMSE and MAE values. Elastic Net 
performed slightly better but still had considerable 
errors. Decision Tree had the lowest RMSE and MAE 
values, indicating high predictive accuracy. Random 
Forest showed similar performance to Decision Tree but 
with slightly higher RMSE and MAE. XGBoost had higher 
RMSE and MAE values but still high R2 scores, indicating 
good but not optimal performance. Tree-based models 
outperformed linear-based models for predicting H2 
production, with Decision Trees and Random Forest 
showing nearly perfect R2 scores, indicating an excellent 
fit or potential overfitting. XGBoost performed well but 
not as well as Random Forest or Decision Tree. 

The analysis of different models based on random 
search optimization techniques for H2 production 
prediction as shown in Table 6 revealed that Ridge 
regression has a moderately high average RMSE, 
indicating it might not capture all the complexities in the 
data. Decision Tree and Elastic Net have the highest 
average RMSE among linear models, indicating that the 
combination of L1 and L2 regularization is not optimal for 
this dataset. Tree-based models, such as Decision Trees 
and Random Forest, have the lowest average RMSE and 
perfect R2 scores, indicating excellent performance and 
generalization capability. XGBoost shows better 
performance than individual decision trees but is not as 
strong as Random Forest. The random search technique 

has successfully identified robust hyperparameters for 
the Random Forest model. 

BO for H2 production prediction is shown in Table 7. 
Linear-based models showed moderately high average 
RMSE, while tree-based models showed lower RMSE and 
higher R2 scores. Decision Tree, Random Forest, and 
XGBoost were the most effective models, with the 
ensemble of linear models showing a high RMSE. 
Random Forest was the best model, showing it can 
handle the complexity of the dataset effectively. Tree-
based models generally outperformed linear models, 
indicating the non-linear relationship in the data. 
XGBoost was strong but not as effective as Random 
Forest, suggesting further tuning. Linear models did not 
show significant improvement, implying non-linear 
models are more suitable for this dataset. Bayesian 
optimization worked well for tuning the Random Forest 
model. 

4.3 Optimization Techniques Comparison 

When comparing the optimization techniques (GS, 
RS, BO) for CH4 and H2 production prediction as shown in 
Table 8 and Table 9, it is noticeable that the differences 
in performance metrics for each model type are minimal 
indicating that all three techniques arrive at similar 
quality hyperparameters for the models, with Random 
Forest consistently emerging as the top-performing 
model across all three techniques. Decision Tree and 
XGBoost also show good performance but are 
consistently outperformed by Random Forest. Linear 
models, while they do not perform as well as tree-based 
models, still show reasonable performance and might be 
preferred for their simplicity and interpretability in 
certain scenarios.  

 
Fig. 6 CH4 Production Optimization Comparison 

The choice of optimization technique does not 
significantly impact the performance of the models, 
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which could indicate that the hyperparameter space is 
relatively well-behaved for this problem, and thus even 
simpler optimization strategies like RS can perform 
nearly as well as more sophisticated ones like BO. These 
results imply that if computation time or resources are a 

factor, RS could be a more efficient approach without a 
significant trade-off in model performance. Figure 6 and 
Figure 7 illustrate the prediction comparison via the 
different optimization techniques. 

Table 4. BO techniques prediction for CH4 production 

Metrics K-Folds 

Tree Based Model Tree Based Model Ensemble 

Ridge Lasso 
Elastic 

Net 

Decision 

Tree 

Random 

Forest 
XGBoost 

Linear 

Models 

Tree 

Models 

RMSE 

1 0.261 0.435 0.346 0.137 0.117 0.117 0.150 0.326 

2 0.268 0.428 0.290 0.112 0.107 0.122 0.138 0.284 

3 0.295 0.449 0.309 0.125 0.112 0.162 0.156 0.333 

4 0.310 0.392 0.249 0.109 0.104 0.118 0.128 0.270 

5 0.291 0.423 0.348 0.138 0.104 0.114 0.132 0.286 

Average 0.285 0.425 0.342 0.125 0.109 0.127 0.141 0.300 

R2 

1 0.968 0.908 0.942 0.991 0.993 0.993 0.989 0.948 

2 0.969 0.922 0.949 0.995 0.995 0.994 0.992 0.965 

3 0.960 0.918 0.944 0.994 0.995 0.989 0.990 0.955 

4 0.960 0.926 0.956 0.994 0.995 0.993 0.992 0.965 

5 0.964 0.929 0.952 0.992 0.996 0.995 0.993 0.967 

Average 0.964 0.921 0.949 0.993 0.995 0.993 0.991 0.960 

MAE 

1 0.205 0.347 0.284 0.105 0.090 0.091 0.117 0.247 

2 0.205 0.347 0.290 0.088 0.083 0.094 0.111 0.224 

3 0.212 0.351 0.309 0.097 0.087 0.108 0.124 0.259 

4 0.241 0.308 0.249 0.089 0.085 0.091 0.107 0.202 

5 0.225 0.348 0.284 0.105 0.082 0.085 0.101 0.226 

Average 0.217 0.340 0.283 0.097 0.085 0.094 0.112 0.232 

Table 5. GS optimization techniques prediction for H2 production 

Metrics K-Folds 

Linear Based Model Tree Based Model Ensemble 

Ridge Lasso 
Elastic 

Net 

Decision 

Tree 

Random 

Forest 
XGBoost 

Linear 

Models 

Tree 

Models 

RMSE 

1 0.763 0.989 1.048 0.124 0.118 0.286 0.333 1.007 

2 0.781 0.912 0.949 0.160 0.105 0.136 0.317 0.888 

3 0.822 0.943 1.005 0.113 0.110 0.322 0.324 0.937 

4 0.891 0.750 0.808 0.114 0.109 0.196 0.249 0.762 

5 0.856 0.878 0.892 0.119 0.117 0.122 0.288 0.876 

Average 0.823 0.894 0.941 0.126 0.112 0.212 0.302 0.894 

R2 

1 0.970 0.967 0.963 0.999 1.000 0.997 0.996 0.966 

2 0.974 0.966 0.963 0.999 1.000 0.999 0.996 0.967 

3 0.977 0.972 0.968 1.000 1.000 0.997 0.997 0.972 

4 0.977 0.979 0.975 1.000 1.000 0.999 0.998 0.978 

5 0.978 0.972 0.971 0.999 0.999 0.999 0.997 0.972 

Average 0.975 0.971 0.968 0.999 1.000 0.998 0.997 0.971 

MAE 

1 0.609 0.748 0.753 0.093 0.089 0.125 0.265 0.744 

2 0.653 0.744 0.741 0.102 0.085 0.100 0.247 0.725 

3 0.646 0.760 0.782 0.093 0.088 0.167 0.270 0.749 

4 0.714 0.588 0.620 0.093 0.090 0.123 0.191 0.576 

5 0.700 0.739 0.715 0.093 0.089 0.096 0.240 0.720 

Average 0.664 0.716 0.722 0.095 0.088 0.122 0.243 0.703 
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Table 6. RS optimization techniques prediction for H2 production 

Metrics K-Folds 
Linear Based Model Tree Based Model Ensemble 

Ridge Lasso 
Elastic 

Net 
Decision 

Tree 
Random 
Forest 

XGBoost 
Linear 

Models 
Tree 

Models 

RMSE 

1 0.767 0.989 1.147 0.319 0.115 0.274 0.332 1.007 
2 0.782 0.912 0.973 0.117 0.111 0.170 0.319 0.888 
3 0.825 0.943 1.074 0.135 0.110 0.267 0.325 0.937 
4 0.891 0.750 0.872 0.110 0.112 0.203 0.246 0.762 
5 0.854 0.878 0.934 0.126 0.123 0.133 0.294 0.876 

Average 0.879 0.894 1.000 0.161 0.114 0.209 0.303 0.894 

R2 

1 0.969 0.967 0.956 0.997 1.000 0.997 0.996 0.966 
2 0.974 0.966 0.961 0.999 0.999 0.999 0.996 0.967 
3 0.977 0.972 0.964 0.999 1.000 0.998 0.997 0.972 
4 0.977 0.979 0.971 1.000 1.000 0.999 0.998 0.978 
5 0.824 0.972 0.968 0.999 0.999 0.998 0.997 0.972 

Average 0.975 0.971 0.964 0.999 1.000 0.998 0.997 0.971 

MAE 

1 0.614 0.748 0.784 0.115 0.086 0.128 0.265 0.744 
2 0.652 0.744 0.741 0.092 0.088 0.121 0.249 0.725 
3 0.645 0.760 0.804 0.100 0.087 0.153 0.272 0.749 
4 0.713 0.588 0.644 0.088 0.091 0.139 0.187 0.576 
5 0.701 0.739 0.710 0.098 0.093 0.105 0.248 0.720 

Average 0.665 0.716 0.737 0.099 0.089 0.129 0.244 0.703 

Table 7. BO techniques prediction for H2 production 

Metrics K-Folds 

Tree Based Model Tree Based Model Ensemble 

Ridge Lasso Elastic Net 
Decision 

Tree 

Random 

Forest 
XGBoost 

Linear 

Models 

Tree 

Models 

RMSE 

1 0.764 0.989 1.048 0.125 0.114 0.294 0.339 1.007 

2 0.781 0.912 0.949 0.121 0.106 0.149 0.314 0.888 

3 0.825 0.943 1.005 0.141 0.108 0.348 0.347 0.937 

4 0.891 0.750 0.808 0.113 0.111 0.213 0.241 0.762 

5 0.857 0.878 0.892 0.113 0.124 0.122 0.291 0.876 

Average 0.824 0.894 0.941 0.123 0.113 0.225 0.306 0.894 

R2 

1 0.969 0.967 0.963 0.999 1.000 0.997 0.996 0.966 

2 0.974 0.966 0.963 0.999 1.000 0.999 0.996 0.967 

3 0.977 0.972 0.968 0.999 1.000 0.996 0.996 0.972 

4 0.977 0.979 0.975 1.000 1.000 0.998 0.998 0.978 

5 0.978 0.972 0.971 1.000 0.999 0.999 0.997 0.972 

Average 0.975 0.971 0.968 0.999 1.000 0.998 0.997 0.971 

MAE 

1 0.611 0.748 0.753 0.097 0.089 0.143 0.267 0.744 

2 0.653 0.744 0.741 0.090 0.083 0.103 0.247 0.725 

3 0.646 0.760 0.782 0.104 0.086 0.175 0.286 0.749 

4 0.713 0.588 0.620 0.093 0.090 0.129 0.185 0.576 

5 0.700 0.739 0.715 0.088 0.092 0.096 0.244 0.720 

Average 0.665 0.716 0.722 0.094 0.088 0.129 0.246 0.703 

Table 8. Optimization Techniques Performance Comparison for H2 Production 

Metrics Optimization techniques 

Linear Based Model Tree Based Model Ensemble 

Ridge Lasso 
Elastic 

Net 

Decision 

Tree 

Random 

Forest 
XGBoost 

Linear 

Models 

Tree 

Models 

RMSE 

GS Optimization 0.823 0.894 0.941 0.126 0.112 0.212 0.302 0.894 

RS Optimization 0.879 0.894 1.000 0.161 0.114 0.209 0.303 0.894 

BO 0.824 0.894 0.941 0.123 0.113 0.225 0.306 0.894 

R2 

GS Optimization 0.975 0.971 0.968 0.999 1.000 0.998 0.997 0.971 

RS Optimization 0.975 0.971 0.964 0.999 1.000 0.998 0.997 0.971 

BO 0.975 0.971 0.968 0.999 1.000 0.998 0.997 0.971 

MAE 

GS Optimization 0.664 0.716 0.722 0.095 0.088 0.122 0.243 0.703 

RS Optimization 0.665 0.716 0.737 0.099 0.089 0.129 0.244 0.703 

BO 0.665 0.716 0.722 0.094 0.088 0.129 0.246 0.703 
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These results imply that if computation time or 

resources are a factor, Random Search could be a more 
efficient approach without a significant trade-off in 
model performance. Figure 6 and Figure 7 illustrate the 
prediction comparison via the different optimization 
techniques. 

5. CONCLUSIONS 
Machine Learning models have been strongly 

investigated in several fields including hydrogen 
production prediction due to their signification 
performance. However, to achieve optimal performance 
of machine learning models, hyperparameter 
optimization is crucial. Hyperparameter Optimization is 
the technique for determining the ideal hyperparameter 
configuration for a given algorithm trained on a certain 
dataset. Once the hyperparameters have been 
established, the algorithm uses the data to learn the 
model's parameters. This study investigated the role of 
hyperparameter optimizations in ML models for CH4 and 
H2 production prediction from Supercritical Water 
Gasification was investigated specifically Grid search (GS) 
optimization, Random search (RS) Optimization, and 
Bayesian optimization (BO). The results were validated 
using a 5-fold cross-validation. The following 
observations were made in this study; 
❖ From the correlation heatmap, it is observed that 

Temperature is highly positively correlated with CE%, 
production of H2, and the production of CH4, with 
values of 0.87, 0.81, and 0.88, respectively indicating 
that as the temperature increases, these variables 
tend to increase as well.  

❖ CE% has a very strong positive correlation with H2 
and CH4, with correlation coefficients of 0.98 and 
0.95, respectively indicating that better conversion 
efficiency is closely associated with higher 
production of both hydrogen and methane.  

❖ H2 and CH4 are also strongly positively correlated 
with each other (0.88). This indicates a relationship 
where an increase in the production of one is 
associated with an increase in the production of the 
other. 

❖ For model selection, Random Forest is the best 
model for H2 and CH4 Production prediction due to 
its strong performance across all metrics and 
robustness against overfitting. 

❖ The choice of optimization technique does not 
significantly impact the performance of the models, 
which could indicate that the hyperparameter space 
is relatively well-behaved for this problem, and thus 
even simpler optimization strategies like RS can 
perform nearly as well as more sophisticated ones 
like BO. 

 
Fig. 7 H2 Production Optimization Comparison 

In conclusion, these results imply that if computation 
time or resources are a factor, RS could be a more 
efficient approach without a significant trade-off in 
model performance. Future research could explore 
advanced hyperparameter optimization techniques like 
genetic algorithms or reinforcement learning to enhance 

Table 9. Optimization Techniques Performance Comparison for CH4 Production 

Metrics Optimization techniques 

Linear Based Model Tree Based Model Ensemble 

Ridge Lasso 
Elastic 

Net 

Decisio

n Tree 

Random 

Forest 

XGBoos

t 

Linear 

Models 

Tree 

Models 

RMSE 

GS Optimization 0.285 0.425 0.342 0.128 0.111 0.130 0.141 0.300 

RS Optimization 0.285 0.425 0.344 0.124 0.109 0.134 0.142 0.300 

BO 0.285 0.425 0.342 0.125 0.109 0.127 0.141 0.300 

R2 

GS Optimization 0.964 0.921 0.949 0.992 0.995 0.992 0.991 0.960 

RS Optimization 0.964 0.921 0.948 0.993 0.995 0.992 0.991 0.960 

BO 0.964 0.921 0.949 0.993 0.995 0.993 0.991 0.960 

MAE 

GS Optimization 0.217 0.340 0.283 0.095 0.087 0.096 0.112 0.233 

RS Optimization 0.217 0.340 0.283 0.098 0.085 0.098 0.113 0.232 

BO 0.217 0.340 0.283 0.097 0.085 0.094 0.112 0.232 
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CH4 and H2 production predictions from supercritical 
water gasification models. Additionally, incorporating 
multi-objective optimization might help balance 
prediction accuracy and computational efficiency. 
Further studies could also examine the impact of 
different data preprocessing methods on model 
performance. 
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