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ABSTRACT 
 Smart homes use devices that automate tasks like 
security, lighting, and temperature control. These homes 
let people control appliances remotely through the 
Internet of Things (IoT), adjusting to their schedules for 
better energy use. But as energy use rises, it causes more 
pollution, and climate problems, and puts more strain on 
energy sources. Therefore, it's important to track energy 
use closely as the world moves into the use of renewable 
energy to avoid power outages, save money, and protect 
the environment especially because of the intermittent 
nature of renewable energy. This paper proposed an 
Ensemble-Tree Model Based on Bayesian Optimization 
for Solar Energy Generation Prediction in Smart Homes. 
First, three tree-like machine learning models training 
hyperparameters were optimized using the Bayesian 
optimization technique. Secondly, their output was 
concatenated based on Mean Aggregation Methods in 
mathematics. Lastly, the prediction was done based on 
k-fold cross-validation. The ‘smart-home-dataset-with-
weather-information dataset is used while using the R-
squared (R2), Mean Squared Error (MSE), and Mean 
Absolute Error (MAE) to observe how accurate the 
predictions are. Results show that the proposed model 
outperforms other machine learning models with R2 
value of 0.988 as compared in this paper. 
 
Keywords: Solar Generation, Smart Homes, Internet of 
Things, Machine Learning, Prediction  
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RF Random forest 
DT Decision Tree 
KNN           K-Nearest Neighbors 
MAE Mean Absolute Error 
MSE Mean Squared Error 
LR Linear Regression 
LGBM Light Gradient Boosting Machine 
ADABOOST Adaptive Boosting 
Symbols  
 R2 R-squared 
CO2 Carbon Dioxide 

1. INTRODUCTION 
Electricity consumption is one of the leading factors 

to the surge in global energy consumption that has been 
linked to an increase in carbon dioxide (CO2) emission 
and adds to changes in climate. As the world unites in the 
pursuit of clean energy to mitigate global temperature 
rise, renewable sources have emerged as a promising 
alternative to fossil fuels for electricity generation, owing 
to their pollution-free and waste-free nature [1]. To 
embrace this shift, numerous industries and sectors have 
considered the installation of wind turbines, solar panels, 
and other renewable energy resources. Due to this 
increase, especially in solar power, the need for accurate 
and reliable solar prediction becomes sacrosanct in 
smart homes to allow proper electricity management to 
avoid light outages because all the gadgets in smart 
homes are solely dependent on electricity [2].  In this 
context, the application of Artificial Intelligence (AI) in 
the form of smart homes has emerged as a leading 
initiative, leveraging information and communication 
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technologies to enhance residents' convenience, 
security, and comfort [3]. 

Smart homes, which are technologically advanced 
domiciles, are entirely managed and monitored through 
internet-connected devices, offering numerous benefits 
such as enhanced efficiency, security, privacy, and 
energy management [4]. The seamless interaction 
between humans and computers, facilitated by 
innovative technologies like the Internet of Things (IoT) 
[5], plays a central role in the functionality of smart 
homes. The IoT framework enables the networking of 
various appliances and devices within smart homes, 
empowering communication and automation through 
sensors and actuators [6]. For example, sensors can 
diligently monitor and regulate water and electricity 
consumption, granting residents remote control 
capabilities via applications installed on their mobile 
devices or laptops. By harnessing the potential of IoT-
based devices and leveraging the power of machine 
learning algorithms, smart homes can predict and 
optimize solar energy generation, which is a critical 
component of sustainable energy management [7]. 

Machine learning algorithms have made significant 
strides in recent years, equipping smart homes with the 
ability to analyze extensive weather datasets and 
forecast weather patterns with remarkable accuracy [8]. 
This predictive capability optimizes solar energy 
generation within smart home ecosystems, enabling 
more efficient energy management and cost-effective 
solutions. The precision of solar power prediction within 
smart homes relies heavily on machine learning 
algorithms [9]. This precision holds immense significance 
in ensuring the dependable, economical, and secure 
operation of electrical energy systems. By accurately 
forecasting solar power generation, homeowners can 
make well-informed decisions regarding their energy 
consumption, thereby fostering a more sustainable and 
environmentally conscious lifestyle. 

Ensemble learning and hyperparameter optimization 
techniques are key techniques in machine learning for 
improving predictive performance. Ensemble learning 
uses the collective prediction of multiple models to 
enhance accuracy, robustness, and generalization [10]. 
Hyperparameter optimization techniques uses iterative 
selection of hyperparameters, optimize them efficiently. 
When combined, these methods unlock unprecedented 
potential for model performance, enhancing predictive 
accuracy and adaptability across diverse datasets and 
problem domains[11]. 

Sequel to the above, this paper proposed an 
ensemble-tree model based on Bayesian optimization 

for solar energy generation prediction in smart homes. 
Unlike the traditional methods, this model harnesses the 
power of ensemble learning and hyperparameter 
optimization techniques to achieve superior accuracy 
and reliability in predicting solar energy generation. The 
objective is to assess the generalization of these models 
in optimizing solar energy generation within smart home 
environments using weather variables by comparing key 
metrics such as R-squared, Mean Squared Error (MSE), 
and Mean Absolute Error (MAE). The findings of this 
study aim to show the strength of ensemble models and 
hyperparameter optimization techniques for accurately 
predicting solar energy generation using Machine 
learning approach. This, in turn, facilitates enhanced 
energy management, cost-effectiveness, and 
environmental sustainability within smart homes. 

This paper is organized as follows: Section 2 reviews 
previous work, Section 3 describes the proposed model, 
machine learning algorithm compared, dataset and data 
preprocessing, evaluation metrics and the 
implementation setup. Section 4 covers the results and 
discussions while Section 5 summarizes the main findings 
of the paper. 

2. RELATED WORKS  
Predicting solar energy generation in smart homes 

using machine learning algorithms represents a critical 
intersection of renewable energy research and advanced 
computational techniques. However, to the best of my 
knowledge few researchers have ventured into this 
research area. Researchers like Huertas-Tato and Brito 
[12] explored the efficacy of smart persistence and 
random forests in predicting photovoltaic energy 
production. Their work emphasizes the versatility of 
machine learning approaches in handling the variability 
and unpredictability inherent in solar energy generation, 
thus enhancing the reliability of predictions. Al-Dahidi et 
al. [13] demonstrated the effectiveness of extreme 
learning machines in predicting solar photovoltaic 
power, these finding is particularly relevant for smart 
homes, where accurate energy predictions are crucial for 
optimizing energy management and storage systems. It 
is worth to note that, the integration of machine learning 
algorithms into smart home energy systems illustrates 
the potential for these technologies to improve energy 
efficiency and reduce costs [14]. M. Kutseva,[15] not only 
highlights the practical applications of machine learning 
in managing and forecasting energy in smart homes but 
also underscores the importance of real-time data 
processing and adaptive learning algorithms in achieving 
these goals. Moreover, the work by Dinh Van Tai [16]on 
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predicting the output power of solar photovoltaic panels 
using machine learning approaches further 
demonstrates the utility of these algorithms in 
optimizing solar energy systems under varying 
environmental conditions. 

3. MATERIAL AND METHODS 
This section discusses in details the proposed 

method, the dataset used, the evaluation metric, and the 
implementation details. 

3.1 Proposed method 

The proposed model is an ensemble of the Random 
Forest (RF), Decision Tree (DT), and K-Nearest Neighbors 
(KNN). Ensemble-based models propose that combining 
multiple algorithms reduces the likelihood of errors 
compared to relying on a single algorithm. Implementing 
an ensemble model improves overall prediction 
performance beyond that of the baseline models within 
the ensemble. This is attributed to the diverse nature of 
the classifiers working together which tend to predict 
accurately compared to using non-diverse classifiers 
alone. We denoted their optimal hyperparameters as 
𝜃𝑅𝐹

∗ , 𝜃𝐷𝑇
∗ , and 𝜃𝐾𝑁𝑁

∗  which were obtained through 
Bayesian optimization. The prediction of the individual 
model is expressed as a function of their 
hyperparameters respectively: 

𝑦̂𝑅𝐹 = 𝑅𝐹(𝜃𝑅𝐹,
∗ 𝑋) (1) 

𝑦̂𝐷𝑇 = 𝐷𝑇(𝜃𝐷𝑇
∗ , 𝑋) (2) 

𝑦̂𝐾𝑁𝑁 = 𝐾𝑁𝑁(𝜃𝐾𝑁𝑁
∗ , 𝑋) (3) 

The weight is denoted as 𝑤𝑅𝐹 , 𝑤𝐷𝑇,𝑎𝑛𝑑 𝑤𝐾𝑁𝑁 

respectively. The ensemble prediction is represented 
mathematically in Equation (4). 

𝑦̂𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒 =  𝑤𝑅𝐹 . 𝑦̂𝑅𝐹 + 𝑤𝐷𝑇 . 𝑦̂𝐷𝑇 + 

𝑤𝐾𝑁𝑁. 𝑦̂𝐾𝑁𝑁 
(4) 

Constraint is added to ensure the total weight is up 
to 1 since they represent proportion, which ensures that 
the prediction is a convex combination of the individual 
model predictions as seen in Equation (5). 

𝑤𝑅𝐹 + 𝑤𝐷𝑇 + 𝑤𝐾𝑁𝑁 = 1 (5) 

Each weight 𝑤𝑖  are determined based on the 
performance of the corresponding model. 

3.2 Compared baseline models 

 Four Machine learning regression algorithms 
were analyzed in this paper namely Linear Regression, 
Light Gradient Boosting Machine, Random Forest and 

Adaptive Boosting. The LightGBM Regressor uses tree-
based ensemble, in which several weak learners, often 
decision trees, are merged to create a powerful 
predictive model. 

 
Fig. 1. Proposed methodology 

The algorithm aims to minimize a loss function that 
is differentiable by optimizing the weights of the weak 
learners and the final prediction is the sum of predictions 
from all the trees in the ensemble. LightGBM regression 
model is mathematically explained as thus; 

𝑦̂𝑖 = ∑ 𝑓𝑘(𝑥𝑖)
𝐾

𝑘=1
 (6) 

Where, 𝑦̂𝑖  is the predicted value for the 𝑖𝑡ℎ data 
point, 𝑓𝑘(𝑥𝑖) is the 𝑘𝑡ℎ tree's prediction for the 𝑖𝑡ℎ 
data point, 𝐾  is the total number of trees in the 
LightGBM model, 𝑥𝑖 represents the features of the 𝑖𝑡ℎ 
data point. 

 Random Forest constructs several decision trees 
using bagging and random feature selection. Every tree 
is trained on a portion of the data and considers a 
random selection of characteristics at each division. In 
regression problems, the ensemble prediction is 
obtained by calculating the average of the predictions 
made by each individual tree as seen in Equation (7). 

𝑦̂ =
1

𝑛
∑ 𝑇𝑖(𝑥)

𝑛

𝑖=1
 (7) 

Where, 𝑦̂ is the predicted value of the input data 
point, 𝑇𝑖(𝑥)  denotes the prediction of the 𝑖𝑡ℎ 
decision tree for the input data point 𝑥, 𝑛 is the total 
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number of decision trees in the Random Forest 
ensemble. 

AdaBoost combines weak learners to create a 
powerful classifier. The AdaBoost algorithm adds 
weights to the training instances, giving more 
importance to the ones that are misclassified, in order to 
train weak learners in a sequential manner and enhance 
the overall accuracy. 

𝑦̂ = (∑ 𝛼𝑡

𝑇

𝑡=1
. ℎ𝑡(𝑥)) (8) 

Where 𝑦̂ is the final prediction for a given input 𝑥, 
𝑇 is the total number of weak learners, 𝛼𝑡 is the weight 

assigned to the 𝑡𝑡ℎ  weak learner, ℎ𝑡(𝑥))  is the 

prediction made by the 𝑡𝑡ℎ weak learner for the input 
𝑥. 

Linear regression is used for modeling the 
relationship between a dependent variable and one or 
more independent variables. The changes in 
independent variables are related to the relationship of 
dependent variables in the form of a straight line 
because their relationship is assumed to be linear. 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝑝 + 𝜖 (9) 

Where: 𝑌 is the dependent variable, 𝑋1, 𝑋2, … , 𝑋𝑝 

are the independent variables, 𝛽0  is the intercept, 
𝛽1, 𝛽2, … , 𝛽𝑝  are the coefficient of the independent 

variables, 𝜖 is the error term. 

3.3 Dataset and data preprocessing 

The project utilized a dataset called the 'Smart Home 
Dataset with Weather Information' from Kaggle [17], 
which contains readings from household appliances over 
350 days, recorded in kilowatts (kW) and accompanied 
by corresponding weather conditions. The dataset 
contains 503,910 data points, each with 32 features. The 
dataset was divided into training and testing sets, with 
80% allocated for training and 20% for testing. 

In the preprocessing stage of the paper, all non-value 
elements were eliminated. Object types were 
transformed into integers utilizing label encoding. 
Feature selection was conducted using Elastic Net, 
followed by grid search optimization. 

3.4 Evaluation metrics 

Three evaluation metrics was considered in this 
experiment namely the Mean Absolute Error (MAE), R-
squared (R2) and Mean Squared Error (MSE). The MAE 
quantifies the average absolute differences between the 
predicted and actual values, providing a measure of the 
average magnitude of errors. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1
 (10) 

Where 𝑛 is the number of data points, 𝑦𝑖  is the 
actual value and 𝑦̂𝑖  is the predicted value. R2 quantifies 
the extent to which the variability in the dependent 
variable can be explained by the independent variables. 
It is expressed as a value between 0 and 1. 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 (11) 

Where 𝑛 is the number of data points, 𝑦𝑖  is the 
actual value, 𝑦̂𝑖  is the predicted value and 𝑦̅  is the 
mean of the actual values. MSE is a metric that calculates 
the average of the squared differences between 
predicted and actual values, providing a measure of the 
average squared error. 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1
 

(12) 

3.5 Implementation Details 

The Implementation step of the deployed models 
include loading the dataset. Converting of some columns 
into float data type using label encoding as well as 
imputing missing values using the mean strategy. The 
features and target variables are defined based on the 
dataset, where the predictors (X) consist of all columns 
except "total," "Solar," and "House overall," and the 
target variable is "Solar." The Elastic Net is applied to the 
predictors (X) and the target variable to identify 
important features based on their coefficients. Features 
with non-zero coefficients are selected (top features 
with the highest scores). For the proposed model, the 
Bayesian optimization is used for hyperparameter 
selection of the individual models before the 
concatenation. Also, the k =5-fold cross validation is 
employed. GridSearchCV is employed in all the machine 
learning models to perform hyperparameter tuning 
using cross-validation (cv=5) on the training set.  

4. RESULTS 
This section focuses on the predicted results of the 

deployed models, First, the correlation heatmap showing 
the correlation coefficients between different variables 
of the dataset is presented in Fig. 2. It helps to identify 
patterns and relationships between variables in the 
dataset. The color intensity represents the strength and 
direction of the correlation: positive correlations are 
indicated by warmer colors (e.g., red), negative 
correlations by cooler colors (e.g., blue), and weaker 
correlations by colors closer to neutral (e.g., white). 
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Fig. 2 Correlation heatmap 

4.1 Proposed model result 

The proposed model result is shown in Table 2 and 
Fig 3 with K=5 cross-validation. The result shows that the 
proposed model performed consistently well across 
different folds, as indicated by the low RMSE values, 
which range from 0.013 to 0.014.  

Table 2. Proposed Model Result 
K-Fold Validation RMSE R2 MSE MAE 

1 0.013 0.988 0.001 0.004 

2 0.014 0.986 0.001 0.005 

3 0.013 0.988 0.001 0.004 

4 0.013 0.989 0.000 0.004 

5 0.013 0.988 0.001 0.004 

Average 0.013 0.988 0.001 0.004 

 
Fig. 3 Proposed model prediction visualization 

Additionally, R2 values are very high, ranging from 
0.986 to 0.989, indicating that the proposed model 

explains a high percentage of the variance in the data. 
The MSE values are consistently low, all at 0.001, 
indicating that the average squared difference between 
the predicted values and the actual values is very small. 
Similarly, the MAE values are consistently low, all at 
0.004, which means that, on average, the absolute 
difference between the predicted values and the actual 
values is very small. Overall, these results indicate that 
the model is accurate and reliable in predicting the target 
variable, as indicated by the low error metrics and high 
R2 values. 

4.2 Result Comparison with Machine Learning Models 

The proposed model result is compared with 4 
machine learning models as shown in Table 3 and Fig. 4. 
The Random Forest model outperforms the listed 
models, demonstrating the highest R2 value and the 
lowest MSE and MAE. However, compared with the 
proposed model, the proposed model stood out 
indicating that the proposed model excels in accurately 
and precisely predicting solar energy generation in smart 
homes based on the given features. 

Table 3. Proposed Model Result Comparison 

Model R2 MSE MAE 

LGBM 0.9165 0.0014 0.0184 

Random Forest 0.9734 0.0004 0.0057 

AdaBoost 0.6097 0.0064 0.0464 

Linear 
Regression 

0.3819 0.0101 0.0748 

 
Fig. 4 Visualization of the predicted results 

Although LGBM also performs well, with high R-
squared and relatively low MSE and MAE, it falls slightly 
behind the Random Forest model in terms of predictive 
accuracy. On the other hand, AdaBoost and Linear 
Regression models exhibit lower R-squared values and 
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higher MSE and MAE when compared to Random Forest 
and LGBM, indicating their lesser effectiveness in 
explaining and predicting solar energy generation in 
smart homes based on the given features.  

 
Fig. 5 AdaBoost prediction 

 
Fig. 6 LGBM prediction 

 
Fig. 7 Linear Regression prediction 

Given that accuracy and precision are the primary 
concerns in predicting solar energy generation in smart 

homes, the Random Forest model emerges as the 
preferred choice based on the provided results. Fig. 5 
shows the relationship between the real and predicted 
values of the AdaBoost model. The blue line represents 
the real values, while the red line represents the 
predicted values indicating that the predicted values 
generally being slightly lower than the real values. Fig. 6 
shows a scatter plot of the predicted vs real values of the 
LGBM model with the values plotted on a two-
dimensional axis. The x-axis represents the predicted 
values, while the y-axis represents the real values. The 
graph shows how closely the predicted values align with 
the real values. 

 
Fig. 8 Random Forest prediction 

 
Fig. 9 Proposed model prediction 

Fig. 7 shows that of the LR model. It is seen from the 
graph that the predicted values are slightly higher than 
the real values. The real values are represented by the 
blue line, while the predicted values are represented by 
the red line. This indicates that the prediction model 
tends to overestimate the values compared to the actual 
values. Fig. 8 and Fig. 9 show the graphs of the RF and 
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the proposed model. it is evident that there is a strong 
correlation between the real and predicted values. The 
graphs show a clear relationship between the two lines, 
with the predicted values closely following the real 
values, The red and blue lines are almost parallel, 

indicating a high level of accuracy in the predictions. 
However, there is a slight gap between the two lines, 
indicating that there may be some discrepancies 
between the actual and predicted values. 

Table 1. Descriptive statistics summary of the dataset 

5. CONCLUSION 
With the rising global energy use and the urgent 

need for cleaner energy sources to protect the 
environment, accurately predicting solar energy is 
crucial. This study proposed an Ensemble-Tree Model 
Based on Bayesian Optimization for Solar Energy 
Generation Prediction in Smart Homes. The result is 
evaluated based on K-Fold cross validation while using 
the ‘smart-home-dataset-with-weather-information 
dataset as well as R-squared (R2), Mean Squared Error 
(MSE), and Mean Absolute Error (MAE) to observe how 
accurate the predictions are. Furthermore, four machine 
learning methods: Light Gradient Boosting Machine 
(LGBM), Random Forest, AdaBoost, and Linear 
Regression were developed and compared in this study. 
We found that the Random Forest model outperforms 
others while the proposed model supersedes all other 
performances with an R2 value of 0.988. Our findings 
show how the proposed model can help manage energy, 
save costs, and protect the environment in smart homes. 
Future research can explore better techniques and test 
these models in real-world situations. Our study adds to 
our understanding of renewable energy prediction and 
how machine learning can make smart homes more 
sustainable. 
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