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ABSTRACT 
In order to ensure the safe and stable operation of 

electric vehicle (EV) charging stations and improve the 
accuracy of fault diagnosis, a fault diagnosis method 
based on an improved Backpropagation Neural Network 
(BP) is proposed. This method first preprocesses the 
operational dataset of the charging stations. Then, the 
preprocessed dataset is input into the BP model for 
training to learn the correlation between the normal and 
faulty states of the charging stations. Finally, an 
improved optimization technique is introduced to 
optimize the weights and thresholds of the BP model. 
This technique combines the Firefly Algorithm (FA) and 
the Northern Goshawk Optimization Algorithm (NGO) to 
obtain the optimal model by optimizing the BP model. 
Simulation results demonstrate that the proposed 
improved BP method has good computational 
advantages in terms of precision and recall rates. 
Compared to the traditional BP algorithm, the improved 
BP method achieves a 10.83% increase in diagnostic 
accuracy and can accurately diagnose the status of the 
charging stations. 
 
Keywords: charging pile, fault diagnosis, neural network, 
firefly algorithm, northern goshawk optimization. 

1. INTRODUCTION 
In recent years, there has been a significant growth 

in the number of electric vehicle charging stations in 
China, driven by strong government support and the 
increasing adoption of electric vehicles [1]. However, this 
rapid expansion has also brought about certain 
challenges. The charging stations are often numerous 
and widely dispersed, making them difficult to manage 
effectively. Moreover, many charging stations operate 
with limited staff or are unattended, which adds 
complexity to their maintenance and daily operations 
[2]. Therefore, there is a pressing need to enhance the 
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fault diagnosis technology for charging stations in order1 
to ensure their efficient maintenance, safe operation, 
and facilitate the continued growth of the electric vehicle 
industry [3-5]. 

In terms of fault diagnosis, three main paradigms are 
commonly used, including the model-based approaches, 
signal-based approaches, and knowledge-based 
approaches [6], which have their advantages and 
disadvantages over various applications [7]. First, model-
based approaches require constructing a diagnosis 
model in advance and a diagnosis algorithm is also 
designed to monitor the consistency between the 
outputs of practical systems and the model-predicted 
outputs [8]. The prominent advantage of model-based 
approaches is that only a small amount of data is needed 
to accomplish the fault diagnosis. However the 
diagnostic accuracy depends highly on the precision of 
the constructed model, which is usually difficult to obtain 
in practical scenarios. Also, the constructed diagnosis 
model is usually designed to detect faults of specific 
devices, which has narrow applicability to other 
diagnostic scenarios [9]. Second, the signal-based 
approaches extract the features of faults from the 
measured signals, based on which a diagnostic decision 
is then made via symptom analysis with prior knowledge 
of symptoms such as in healthy systems [10]. In 
particular, the signal-based approaches require no 
modeling in advance. It is worth noting that the signal-
based approaches may demonstrate poor performance 
when dealing with unknown input disturbances or 
unbalanced conditions. Third, the knowledge-based 
approaches use various technologies of artificial 
intelligence with available historical data to extract 
implicit dependencies between faults and variables, 
which are also called the data-driven fault diagnosis. 
Compared with the model-based approaches and signal-
based approaches, the knowledge-based approaches 
perform better in some aspects, including the system 
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portability and anti-interference capability, which thus 
draw great attention within both academia and industry. 

Backpropagation neural networks have advantages 
such as strong learning ability and wide applicability. 
However, they are sensitive to initial weights and 
thresholds, and optimizing these parameters can 
improve the performance of the BP model [11-12]. 
Further research is needed to explore how to optimize 
the weights and thresholds of the BP model to improve 
its training performance and enhance the accuracy of 
fault diagnosis. 

To address the afore mentioned issues, the author 
proposes an improved fault diagnosis method for 
backpropagation neural networks using a combination of 
Firefly Algorithm (FA) and Northern Goshawk 
Optimization Algorithm (NGO). By leveraging the 
advantages of both FA and NGO, the proposed method 
is called Firefly Algorithm Improves Northern Goshawk 
Optimization Algorithm (FA-NGO). FA-NGO is utilized to 
optimize the parameters of the backpropagation model, 
leading to the attainment of an optimal model. Finally, 
based on this model, accurate diagnosis of fault states in 
DC charging stations is performed. 

2. EXPERIMENTAL RELATED WORK  

2.1 Northern Goshawk Optimization  

The hunting strategy of the Northern Goshawk can 
be divided into two phases: In the first phase, the 
Northern Goshawk rapidly approaches its prey once it 
identifies it. In the second phase, the Northern Eagle 
hunts its prey within a small range. The Northern 
Goshawk Optimization (NGO) algorithm is proposed 
based on the aforementioned hunting behavior [13].  

In NGO, each individual in the population represents 
a feasible solution. The algorithm begins by randomly 
initializing the population within the search space. This 
population X  is defined as: 
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where, kX  represents the k  Northern Goshawk 

individual; ,k dx represents the value of the d  variable 

of the k  feasible solution; N  represents the number 
of individuals in the population; D  represents the 
dimension of variables. 

NGO is based on the mathematical model of 
Northern Goshawk's hunting behavior, and its iteration 
process can be divided into two phases: the first phase is 
the identification and attack phase; the second phase is 
the escape and pursuit phase. 

In the first phase, the Northern Goshawk randomly 
selects a prey G  and quickly attacks it. This phase 
increases NGO's global search ability and can quickly 
approach the target region of the optimal solution. The 
mathematical model for this phase is: 
 sG X=  (2) 
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where, kX  represents the k  feasible solution; ,1kX  

represents the new position of the k  feasible solution 

in the first phase;   is a random number within  0,1 ; 

F  is the fitness function; s is a positive random 

number within  1,N ; I  takes a value of 1 or 2. 

In the second phase, after attacking the prey, the 
Northern Goshawk will try to escape, and the Northern 
Goshawk will continue to pursue the prey. Because the 
Northern Goshawk is very fast, it can catch up with the 
prey in any situation and complete the hunt. This phase 
enhances NGO's local search ability and can quickly 
approach the optimal solution. In NGO, assuming the 
hunting radius of the Northern Goshawk is R , the 
mathematical model for this phase is: 

 ( )max1 /R it T= −  (5) 
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where, it  represents the current iteration number; 

maxT  represents the maximum number of iterations;   

represents the step size; ,2kX  represents the new 

position of k . 
Compared to previous intelligent algorithms, the 

NGO algorithm has a stronger ability to search for 
optimal parameters and is less prone to getting trapped 
in local optima. 

2.2 Firefly Algorithm 

The FA is inspired by the behavior of fireflies, which 
move based on their relative brightness. It is 
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characterized by the following settings: the movement of 
fireflies is directly linked to their brightness; the relative 
brightness is inversely proportional to the distance 
between fireflies, and directly proportional to their 
attraction; under normal circumstances, individuals 
freely move until a brighter firefly appears in their 
vicinity[14]. 

In the Firefly Algorithm, Relative Fluorescent 
Intensity can be defined as: 
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where, 0I  represents the maximum fluorescent 

intensity, which is positively correlated with the fitness 
value.   is the light absorption coefficient, which is 

associated with the degree of light absorption by the 

medium through which light propagates in the air. ,i jr

represents the relative distance between individual i  
and j . 

The equation for the mutual attraction between 
fireflies is: 
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where, 0 represents the maximum attraction when 

0r = . 
The equation for the movement of low-brightness 

fireflies towards brighter fireflies: 
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where, t  represents the iteration number. 1t
ix
+  

represents the coordinate variable of the i  firefly in the 

1t + . t
ix  and t

jx  represent the coordinate variables of 

the i  and j  fireflies, respectively.  is the 

algorithmic movement distance, with a range of 

 0,1 .rand is a random value scattered in the range 

 0,1 . 

During each iteration, the position of each firefly is 
updated based on the relative fluorescent intensity and 
visibility, aiming to search for the optimal solution. The 
Firefly Algorithm (FA) is characterized by its simplicity, 
ease of operation, and fast convergence speed. 

3. FAULT DIAGNOSIS MODEL BASED ON FA-NGO-BP 

3.1 FA Optimizing NGO 

Due to the possibility of getting trapped in local 
optima during the process of finding optimal weights and 
thresholds, NGO may face limitations. By incorporating 
FA to optimize NGO, it is possible to enhance the 
algorithm's global search capability and reduce the 

likelihood of getting stuck in local optima. This 
improvement can lead to better exploration of the global 
optimal solution, thereby enhancing the performance 
and accuracy of the algorithm. 

After the completion of the NGO search process, 
individuals in the population are subjected to firefly 
fluorescence disturbances based on the magnitude of 
their fitness values. This means that the positions of 
individuals are perturbed according to their fitness 
values. If a better fitness value is obtained after the 
perturbation, the position of the Northern Goshawk is 
updated according to the best fitness value, and the 
corresponding iteration count is also updated. This 
approach helps the algorithm escape from local optima 
and improves its search capability for optimization. 

3.2 FA-NGO-BP Prediction Model 

1) Data preprocessing, including filling missing values, 
partitioning training and testing sets, normalizing 
sample data, and shuffling sample data. 

2) The fitness function is chosen as the mean squared 
error (MSE), which is formulated as follows: 
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3) Set the population size, upper and lower bounds of 
positions for the Northern Goshawk Optimization 
Algorithm and Firefly Algorithm, as well as the 
number of input layers, output layers, hidden 
layers, and activation functions for the BP neural 
network. 

4) Train the preprocessed data using the 
backpropagation neural network, searching for the 
current optimal solution and its corresponding 
fitness value, to obtain the optimal position of the 
Northern Eagle. 
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Fig. 1 FA-NGO-BP algorithm flowchart 
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5) Use the optimized position of the Northern Eagle 
obtained through the NGO search as the initial 
firefly positions for the Firefly Algorithm. Calculate 
the initial fitness of the FA, and then compute the 
firefly brightness and attractiveness. Finally, update 
the firefly positions and the optimal fitness based 
on the motion equation of the fireflies. 

6) Assign the obtained optimal position values of the 
fireflies to the weights and thresholds of the 
backpropagation algorithm. BP obtains the optimal 
parameters of this algorithm and undergoes 
training, resulting in diagnostic output. 

4. SIMULATION EXPERIMENT 

4.1 Data preprocessing 

This study randomly selected 600 sets of data from 
the 2019 Baidu Novice Competition charging pile fault 
dataset for the experiment. A total of 480 sets were 
designated as the training set, while the remaining data 
was allocated as the test set. The fault dataset consists 
of 6 features, namely, S1 for K1K2 drive signal, S2 for 
electronic lock drive signal, S3 for instant stop signal, S4 
for access control signal, S5 for voltage total harmonic 
distortion, and S6 for current total harmonic distortion. 
In the dataset, '1' represents normal operating status, 
while '2' represents the fault status.  

4.1.1 Data normalization 

The normalization approach is used to map the 
values of different features or data to a unified standard 
range, in order to eliminate the dimensional differences 
and improve the accuracy of weight and threshold 
optimization. The normalization expression is as follows: 

 in
s
XX 
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where, 𝑋𝑖𝑛  is the input, 𝜇 is the mean, and 𝜎 is the 
standard deviation. The normalized results are shown in 
Figure 2. 

4.1.2 Data interpolation 

Data loss is a common problem during the data 
collection process. In the operation of charging 
equipment, there may be situations where some sensor 
measurement points fail to function properly, resulting 
in partial loss of collected operational state information. 
This article uses the mean method to fill in missing data. 
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where, 𝑋𝑖  represents the data value, 𝑚𝑖  is the 
number of data points, and 𝜂 determines the need for 
data filling. 

4.2 Result analysis 

To demonstrate the algorithm's good diagnostic 
accuracy, the dataset was divided into a training set and 
a test set. The training set was used to train the 
traditional BP model, NGO-BP model, and FA-NGO-BP 
model. Then, the trained models were used to predict 
the test set. Figures 3 to 5 depict the comparison of the 
four models on the test set, where yellow squares 
represent the comparison for operating state 1, and 
green squares represent the comparison for operating 
state 2. Accuracy rates were determined by dividing the 
count of correctly predicted values by the total number 
of predictions. The accuracy rates for the three models 
are as follows: 81.67% for the BP model, 86.67% for the 
NGO-BP model, indicating higher prediction accuracy. 

4.3 Diagnostic performance analysis 

Figures 6, 7, and 8 represent the confusion matrices 
for the BP, NGO-BP, and FA-NGO-BP algorithms, 
respectively. The four values in the figures represent the 
number of instances where the predicted and actual 
values are both 1, the number of instances where they 
are both 2, the number of instances where the predicted 
value is 1 and the actual value is 2, and the number of 
instances where the predicted value is 2 and the actual 
value is 1. Based on these figures, we calculated the 
precision, recall, and F1 score for each algorithm, as 

shown in Table Ⅱ. Further comparisons of performance 
metrics revealed that the FA-NGO-BP algorithm exhibits 
significant advantages in terms of precision and F1 score 
when compared to the BP algorithm, with performance 

 
Fig. 2 Normalized data 
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improvements of 19.28% and 8.28% respectively. 
Compared to the NGO-BP algorithm, the FA-NGO-BP 
algorithm shows an improvement of 6.59% in precision, 
4.84% in recall, and 5.35% in F1 score. Therefore, the 
classification prediction model constructed by the FA-
NGO-BP algorithm demonstrates better classification 
prediction effectiveness. 

4.4 Error analysis 

As shown in Figure 10. Firstly, in the FA-NGO-BP 
model, the Mean Absolute Percentage Error (MAPE) is 

60% of the BP model. This indicates a significant 
improvement in reducing prediction errors and bringing 
the model closer to the actual values. Secondly, the 

Mean Squared Error (MSE) and Root Mean Squared Error 
(RMSE) further measure the differences between 
predicted and actual values. The MSE and RMSE are 
reduced by approximately 50.08% and 36.03% 
respectively compared to the BP model, and by 
approximately 43.75% and 25.11% respectively 
compared to the NGO-BP model. This signifies that the 
FA-NGO-BP model exhibits significant improvement in 

handling larger errors. Lastly, the coefficient of 
determination (R2) evaluates the quality of the 
regression model's fit to the data. In the FA-NGO-BP 
model, the R2 value is 2.6 times higher compared to 
before optimization. Therefore, the FA-NGO-BP model 
demonstrates better performance. 

 
Fig. 3 BP prediction results 

 
Fig. 4 NGO-BP prediction results 

 
Fig. 5 FA-NGO-BP prediction results 

 
Fig. 6 BP Confusion Matrix 

 

 
Fig. 7 NGO-BP Confusion Matrix 

 
Fig. 8 FA-NGO-BP Confusion Matrix 
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5. CONCLUSIONS 
This paper proposes a diagnostic algorithm based on 

FA-NGO-BP for electric vehicle charging station faults. 
Leveraging the global search capability of FA, it helps 
NGO escape local optima, thereby enabling the BP 
algorithm to obtain optimal weights and thresholds. 
Experimental results using real charging station data are 
presented, comparing the traditional BP model with the 
NGO-optimized BP model. The FA-NGO-BP model 
achieves higher diagnostic accuracy, reaching 92.5%. 
Precision and F1 score are improved by 7% to 25%. 
Additionally, metrics such as mean absolute error, mean 
percentage error, and root mean square error are 
significantly reduced. In conclusion, the proposed 
charging station diagnostic algorithm demonstrates clear 
advantages in terms of diagnostic accuracy and holds 
promising application prospects. 
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