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ABSTRACT 
The front-end part of the DC charging module for 

electric vehicles commonly utilizes the Vienna rectifier, 
whose stable operation directly impacts the overall 
status of the charging module. Therefore, focusing on 
the characteristics of open-circuit faults in core 
components such as power switches and electrolytic 
capacitors of the Vienna rectifier, this paper proposes a 
diagnostic method based on Empirical Mode 
Decomposition (EMD) and Whale Optimization 
Algorithm (WOA) optimized Random Forest (RF) 
algorithm. Firstly, by constructing a simulation model of 
the Vienna rectifier, the waveform characteristics of the 
input current during open-circuit faults are summarized. 
The fault current signal is decomposed, and feature 
vectors are constructed using the EMD method. These 
feature vectors are then input into the classification 
model with optimized parameters using the WOA-
optimized Random Forest. Simulation results 
demonstrate that this method achieves a high fault 
diagnosis rate and reduces diagnosis time, providing 
practical guidance for fault diagnosis in DC charging piles 
for automobiles. 

 
Keywords: Vienna rectifier, Empirical Mode 
Decomposition, Whale Optimization Algorithm, Random 
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1. INTRODUCTION 
Nowadays, under the context of carbon emission 

targets and new infrastructure construction, the country 
vigorously promotes the popularization of new energy 
vehicles. Correspondingly, the development of charging 
facilities has also rapidly expanded[1]. Currently, DC 
charging piles have stood out in charging facilities due to 
their advantages, such as efficient and rapid charging, 
leading to a significant amount of research focused on 
DC charging piles[2]. 
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The Vienna rectifier, as the front-end part of the 

current DC charging module, directly affects the 
operational efficiency of the entire charging module[3]. 
Industrial application data statistics show that power 
capacitors and power switch failures account for the 
highest proportion, with failure rates reaching 30 % and 
26 % respectively[4]. Power switch failures are primarily 
categorized as open circuit faults and short circuit faults. 
Ultimately, short circuit issues will be transformed into 
open circuit problems[5]. Open circuit faults can lead to 
distortion of the input current and increased stress on 
device components. Therefore, it is crucial to diagnose 
open circuit faults in power converters to improve their 
reliability[6, 7]. 

Currently, there are two main approaches for 
diagnosing open circuit faults in Vienna rectifiers. The 
first approach is based on analytical models[8]. However, 
this method is not suitable for situations with complex 
nonlinear characteristics where accurate mathematical 
models cannot be established. The second approach is 
based on signal processing. Power switch failures can be 
further divided into two categories: popular deep 
learning methods[9] and machine learning methods[10]. 
When converting one-dimensional signals into two-
dimensional or even multi-dimensional representations, 
this process may introduce data redundancy and easily 
lead to feature loss issues. Traditional machine learning 
typically involves two steps: feature extraction[11] 
followed by classification or regression[12]. However, this 
process requires manual selection of fault features, 
which may have a certain impact on the final diagnostic 
results. 

This paper proposes a diagnostic method based on 
Empirical Mode Decomposition (EMD) and Whale 
Optimization Algorithm (WOA) optimized Random 
Forest (RF) algorithm. The method takes the three-phase 
input current as the raw signal, undergoes EMD 
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decomposition, and creates feature vectors inputted into 
the WOA-RF classification. Through simulation 
verification, it is evident that this method can improve 
the accuracy of model diagnosis and shorten diagnosis 
time. 

2. TOPOLOGY AND FAULT ANALYSIS OF VIENNA 
RECTIFIER 

This paper selects the three-phase six-switch Vienna 
rectifier circuit for research. The topology of the three-
phase three-wire Vienna rectifier is illustrated in Fig. 1. 

In the Vienna rectifier, faults in power switches and 
electrolytic capacitors are inevitable. However, 
investigations have shown that the likelihood of 
simultaneous failure of multiple components is minimal. 
Therefore, this study focuses on the analysis of individual 
component open circuit faults, including power switches 
S1 to S6, the DC side capacitors labeled as C1 and C2, as 
well as the fault-free state. The corresponding fault types 
are denoted as Y1 to Y9. 

Utilizing the topology structure shown in Fig. 1, a 
Vienna rectifier simulation model is constructed in 
Simulink. The input phase voltage is set to 220 V, and the 
rated output voltage is 750 V. Open circuit fault 
simulations are conducted for the aforementioned 8 key 
components, and based on the simulation results, the 
characteristics of the three-phase input currents in the 
Vienna rectifier are summarized. 

Taking phase B as an example, the variation trend of 
the input current in the rectifier when switch S3 
experiences an open circuit fault is analyzed. As depicted 
in Fig. 2, significant fluctuations occur in the waveforms 
of phases A and C, with the distortion in the input current 
of phase B being the most severe. 

3. FAULT FEATURE EXTRACTION 
EMD decomposes complex signals into a finite 

number of Intrinsic Mode Functions (IMFs) and a residual 
component. Each IMF component captures local feature 
signals of various time scales from the original signal. 

The basic decomposition process of EMD is 
illustrated in Fig.3. Thus, through EMD decomposition, 
the original signal x(t) is decomposed into a linear 
combination of IMF components ranging from high 
frequency to low frequency, along with a residual term 
r(t). 
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Fig.1 Topology Diagram of Three-Phase Vienna 
Rectifier 
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Fig.2 Input Current Distortion After Power Switch S3 
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Fig.3 EMD Decomposition Process Diagram 
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In the equation: ci(t) represents the ith IMF component; 
r(t) is the residue term, which does not include oscillatory 
modes of the signal but reflects the overall trend of the 
signal. The first few high-frequency IMF components 
contain significant and important feature information 
from the original signal. Taking the example of an open-
circuit fault occurring in power switch S3, this paper 
decomposes the faulty input current of phase B using 
EMD, as shown in Fig.4.  

it can be observed that the energy ratio of IMF 
components contains significant and important feature 
information from the original signal. Decomposing the 
residue partially characterizes the degree and direction 
of deviation from the origin of the original signal, as well 
as the sum of energies of all components, denoted as 
Etotal. Thus, a 6-dimensional feature vector is constructed 
for the faulty current of phase B, combined with currents 
of phases A and C, to form a comprehensive feature 
vector. 

4. WHALE OPTIMIZATION ALGORITHM OPTIMIZED 
RANDOM FOREST  

4.1 Principles of WOA and RF algorithm 

Random Forest (RF) is a parallel ensemble learning 
algorithm based on decision trees, proposed by Breiman 
in 2001. It improves the prediction and generalization 
capabilities of the model by constructing multiple 
independent decision trees and combining them 
together. The algorithmic process is illustrated in Fig.5. 

The WOA simulates two hunting behaviors of whale 
groups: “surrounding prey” and “bubble-net hunting”. 
During the iterative process, it continuously adjusts the 
movement direction and step size of the current whales 
to achieve a balance between global exploration and 
local exploitation. The principle is as follows: 

(1) The position of an individual whale in n-
dimensional space is: X = (x1, x2, ... xn). The model 
assumes that whales choose two hunting behaviors with 
equal probability, P1 = P2 = 0.5. 

(2) During surrounding prey behavior, whales will 
swim towards the optimal or random position. 

At that |A| ≥ 1 time, whales will swim towards the 
optimal position whale, and its position update formula 
is: 

 1 ,( 0.5)t t t t
i best best iX X A CX X p+ = − −   (2) 

where, t represents the current iteration number, Xt
best 

and Xt
i are the position vectors of the optimal whale and 

the ith whale, respectively, at the current iteration. Xt
best 

will be updated when a better whale position is found 

during the iteration. p is a random number within the 
range [0, 1]. 

When |A| ≤ 1, the whale will swim towards a 
random position whale, and its position update formula 
is: 

 1t t t t
i r r iX X A CX X+ = − −  (3) 

where Xt
r represents the position vector of the random 

whale, and A and C are coefficient vectors, calculated as 
follows: 
 2A ar a= −  (4) 
 2C r=  (5) 
where the initial value of a is 2 and linearly decreases to 
0 with the iteration count, and r is a random vector in the 
range [0, 1]. 

(3) Bubble-net feeding. When whales engage in 
bubble-net feeding, they swim in a spiral shape, and the 
position update formula is: 

 1 cos(2 ) ( 0.5)t t t bl t
i best i bX X X e l X p+ = −   +   (6) 

where b is a constant (default value is 1), which 
determining the shape of the spiral; l is a random number 
within the range [-1, 1]. 

4.2 WOA-RF model 

The parameters Ntree and Mtree affect the recognition 
accuracy and efficiency of the random forest 
classification process. Therefore, we use particle swarm 
optimization algorithm to optimize these two 
parameters. The process of optimizing RFD with WOA 
algorithm is illustrated in Fig.6, and the specific 
optimization steps are as follows:  

1)Descriptive statistical analysis and normalization 
processing of the slope dataset, followed by a random 
split into training and testing sets with a ratio of 7:3. 
Initialize the parameters of RF, setting the upper and 
lower bounds for the parameters to be optimized. 

N training datasets

Bagging sampling ntree times  

Training 1 ...

...

Vote

Classification results

Generate Random Forest

Training 2 Training ntre e

Decision tree 1 Decision tree ntre e Decision tree 2

 

Fig.5 Random Forest Algorithm Workflow 
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2)Initialize the parameters of WOA, setting the 
population size of whales. 

3)Identify the best search agent and update its 
position with each iteration according to formulas (2) -
(6). 

4)When the termination iteration condition is met, 
output the optimal hyperparameter combination and 
construct the optimal WOA-RF model based on this. 

5. SIMULATION RESULTS AND ANALYSIS 
Considering the energy storage and filtering effect 

of the input filter inductor, aimed at tracking the ability 
of input voltage and current ripple, the inductance and 
capacitance are chosen as 2.5 mH and 2000 μF, 
respectively. In Simulink, the critical parameter design is 
as follows: Input phase voltage is 220 V, output voltage 
is 800 V, fundamental frequency of input voltage is 50Hz, 
output power is 18.4kW and power factor is 0.995. 

In this study, to obtain comprehensive fault data, 30 
samples were collected for each fault type, the dataset 
was divided into training and test sets with a ratio of 7 : 
3. Each sample data was analyzed and processed using 
the EMD method to obtain fault feature vectors. These 
data were then input into the WOA-RF diagnostic model, 
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Fig.6 WOA-RF Diagnostic Model 
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Fig.7 Algorithm Fitness Curve
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Fig.8 Comparison of Prediction Results between Two 

Algorithms 
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Fig.9 Confusion Matrix of the Test Set in the WOA-RF 

Model 
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where the Whale Optimization Algorithm was used to 
optimize the number of trees and layers in the random 
forest. The iteration error change of the model is shown 
in Fig.7. From the change in iteration error of the model, 
it can be observed that the overall error is decreasing, 
ultimately leading to the optimal solution for the number 
of decision trees and layers.  

As shown in Fig.8 below, the prediction performance 
of traditional RF and WOA-RF algorithms on test samples 
is compared. It is evident that the optimization capability 
of the Whale Optimization Algorithm is apparent. 

Although both WOA-RF and RF algorithms are under 
the decomposition of the EMD algorithm, their 
performance in terms of accuracy, training time, and 
mean square error are significantly different. A 
comparison of algorithm results reveals that the WOA-RF 
algorithm improves diagnostic accuracy by 6.2 % 
compared to the RF algorithm, reduces training time by 
2.8 seconds, and decreases mean square error by 0.005. 
Fig. 9 and 10 respectively show the confusion matrices of 
the test set in the WOA-RF model and the RF model. 

6. CONCLUSIONS 
The three-phase Vienna rectifier, as a prominently 

performing AC-DC rectifier, is widely used. Addressing 
the issue of single-component open circuit faults, this 
study proposes the use of the EMD algorithm to 
decompose complex time-domain signals, thereby 
obtaining signals containing crucial fault information. 
Energy is utilized as a feature. The WOA is utilized to 
optimize two key parameters of the random forest. 
Compared to traditional RF, this method improves 
diagnostic accuracy and shortens diagnostic time. These 
findings provide practical guidance for future research 
on fault diagnosis in power electronic converters. 

ACKNOWLEDGEMENT 
This work is supported by State Grid Corporation of 

China Science and Technology Project (No. 5400-
202371588A-3-2-ZN). 

REFERENCE 
[1] J. Guo, X. Zhang, Q. Cao, et al., “Electric vehicles assist 
in promoting China's energy security and coordinated 
advancement of “carbon peak and carbon neutrality”,” 
Journal of the Chinese Academy of Sciences, vol. 39, no. 
02, pp. 397-407, 2024. 
[2] L. Yang, “Discussion on new energy vehicle charging 
systems and common faults,” Internal Combustion 
Engines and Parts, vol. 54, no. 11, pp. 69-71, 2024. 

[3] D. Zhang, M. Xiong, G. You, et al., “Design and 
performance testing of high-power DC fast charging pile 
charging module for electric vehicles,” Science and 
Technology Innovation, vol. 109, no. 25, pp. 213-216, 
2023. 
[4] B. Jiang, Y. Gong, Y. Li, et al., “Analysis, detection, and 
localization method for short-circuit faults in modular 
multilevel converter submodule,” Southern Power Grid 
Technology, vol. 13, no. 03, pp. 73-78+88, 2019. 
[5] Y. Wei, Y. Zhang, B. Wen, et al., “Diagnosis method for 
open-circuit faults in modular multilevel converter 
submodules based on support vector machine,” 
Electrical Technology, vol. 24, no. 10, pp. 1-7, 2023. 
[6] L. Dong, X. Li, B Fu, et al., “Fault diagnosis method for 
open-circuit faults in power devices of electric vehicle DC 
charging piles based on model predictive control,” 
Electrical Engineering Technology, vol. 15, pp. 41-46, 
2023. 
[7] F. K. Yang, S. M. Xu, J Zhou, et al., “Research on fault 
diagnosis of power devices in electric vehicle DC charging 
piles based on wavelet packet analysis,” Electrical and 
Energy Management Technology, vol. 23, pp. 79-85, 
2018. 
[8] Z. W. GAO, CECATI C, DING S X. “A survey of fault 
diagnosis and fault-tolerant techniques—Part I: fault 
diagnosis with model-based and signal-based 
approaches.” IEEE Transactions on Industrial Electronics, 
vol. 62, no. 6, pp. 3757-3767, 2015. 
[9] Z. G. Liang, L. L. Hao, Y. Z. Zhou, et al., “Fault diagnosis 
of rotating rectifier in nuclear multiphase brushless 
excitation system based on convolutional neural 
network,” Journal of Electrical Engineering, vol. 38, no. 
20, pp. 5458-5472, 2023. 
[10] Z. Q. Liu, T. Jin, Y. L. Liu, et al., “Open-circuit fault 
diagnosis method for electric vehicle DC charging piles 
based on tensor reconstruction fusion diagnosis,” 
Proceedings of the Chinese Society for Electrical 
Engineering, vol. 43, no. 05, pp. 1831-1843, 2023. 
[11] J. Y. Huang, Y. T. Li, Y. Cheng, “Research on fault 
diagnosis of six-pulse rectifiers based on PSO-RBF and 
PCA-PSO-PNN.” Foreign Electronic Measurement 
Technology, vol. 41, no. 05, pp. 165-172, 2022. 
[12] W. Yao, Y. Zhang, M. W. Wang, et al., “Fault diagnosis 
of DC charging pile charging module based on WPT and 
SSA-BP,” Southern Power Grid Technology, vol. 17, no. 
09, pp. 85-93, 2022. 


