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ABSTRACT 
 The conversion of biomass waste into bioenergy is 

one of the most important renewable energy production 
strategies. However, the energy inputs and outputs for 
different conversion technologies have not been fully 
comparatively evaluated. Herein, we developed a data-
driven framework to optimize the process conditions of 
conversion technologies, including hydrothermal 
carbonization, hydrothermal liquefaction, and 
hydrothermal gasification, anaerobic digestion (AD), 
pyrolysis, and gasification. Then the predictive properties 
of products from conversions based on optimal 
conditions were employed for following life-cycle energy 
profiles evaluation. The results showed that the 
developed machine learning models performed well with 
most of the R2 > 0.80 for all the targets from the six 
technologies. Energy profile evaluation indicated that 
the AD was the most potential one with respect to the 
energy return of investment by comparing with thermal 
conversions. The energy requirements from thermal 
conversions were mainly caused by the reactor heating 
and feedstock drying for the hydrothermal and dry-
thermal conversions, respectively. 
 
Keywords: waste to energy (WtE), sustainability, 
machine learning, optimization, biologic and thermal 
conversion.  

NONMENCLATURE 

Abbreviations  

HTC hydrothermal carbonization 
HTL hydrothermal gasification 
HTG hydrothermal gasification 
AD anaerobic digestion 
WtE waste to energy 
ML machine learning 
GBR Gradient Boosting Regression 
SVR Supporting Vector Regression  
RF Random Forest 
HHV higher heating value 
Q_reator_heat the reactor hearting 
Q_dring feedstock or hydrochar drying 
Q_oil_ext heat for biocrude extraction 
Q_ hexane 
_eq 

equivalent heating of hexane as a 
solvent for biocrude extraction 

E_basic 
basic electricity consumption of 
conversion process 

E_oil_ext 
electricity consumption of biocrude 
extraction 

1. INTRODUCTION 
Waste to energy (WtE) is the most attractive strategy 

for waste treatment and utilization due to its advantages 
on both environmental and energy aspects. On the one 
hand, the pollution from waste, including odor pollution, 
containments for water and soil pollution, and  
greenhouse emissions, can be avoided by converting the 
waste into valuable products [1]. On the other hand, the 
energy produced from waste, e.g., biogas, biocrude, 
biochar, and syngas, can be as alternatives for fossil fuel 
[2], which is also beneficial for mitigating climate change. 
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Therefore, it is indeed necessary to develop WtE 
technologies for the contribution of the Paris Agreement 
which is to limit the increase of global temperature far 
less than 2 °C or possibly 1.5 °C [3].  

At present, different kinds of waste valorization 
technologies have been developed, including the 
biologic and thermal conversions [4][5][6], e.g., 
anaerobic digestion (AD), hydrothermal conversions (i.e., 
hydrothermal carbonization (HTC), hydrothermal 
liquification (HTL), and hydrothermal gasification (HTG)), 
pyrolysis, and gasification. One point should be 
addressed that although the products from the above 
technologies can be used as energy, some energy will be 
also consumed during the conversion process, especially 
in the thermal conversion. Therefore, understanding the 
energy production potential and consumption of each 
technology is vital to design the waste utilization system 
and make decisions for waste management. 

In this work, to unveil the energy generation and 
consumption of waste conversion technologies, we first 
employed machine learning (ML) algorithms to model 
each conversion process. Six datasets were compiled by 
collecting data from literature based on six conversion 
technologies, including AD, HTC, HTL, HTG, pyrolysis, and 
gasification, as seen in Fig. 1. The feedstock composition 
and process conditions of these technologies as inputs 
and properties of products as outputs were used to 
develop ML models. Then, ML-based process 
optimization was implemented to achieve the optimal 
conversion conditions and maximal energy generation 
for comparison. Moreover, the energy requirement in 
each step of technologies was carefully analyzed to 
identify the net energy production potential.  

2. METHODOLOGY 

2.1 Data collection and formation 

To model the waste conversion technologies, 
literature about anaerobic digestion, hydrothermal 
carbonization, hydrothermal liquefaction (or 
supercritical water gasification), and hydrothermal 
gasification, pyrolysis, and gasification of waste (e.g., 
food waste and manure) were searched and reviewed 
through the database of Google Scholar and Scopus. The 
data relating to the waste composition (i.e., C, H, N, O, 
and Ash contents), the process conditions, such as the 
reaction temperature and time, and corresponding 
product properties, e.g., the composition higher heating 
value (HHV) of char and char, combustible oil and gas 
from hydrothermal conversions, pyrolysis, and 
gasification, the biogas from AD, were collected and 
calculated to compile datasets for ML model 
development. To make the data consistent, the units for 
each variable were unified and all the data were 
normalized before ML developing the predictive models 
[7]. 

2.2 Machine learning models development 

To develop good models for waste conversions, the 
five-fold cross-validation method was employed for 
hyper-parameter tuning with 80% data points of each 
dataset and left 20% were used to test the model 
performance [8]. Based on the previous investigation, 
the Gradient Boosting Regression (GBR) model was 
developed to model the AD process. The composition of 
waste, including C and N contents, the AD process 
conditions, e.g., organic loading rate, hydraulic retention 
time, temperature, and biochar dosage, were considered 
as inputs. The CH4 and CO2 yields and HHV of biogas were 
identified as outputs. For the hydrothermal conversions, 
the Supporting Vector Regression (SVR), GBR, and 
Random Forest (RF) models well adapted to the HTC, 
HTL, and HTG, respectively. The feedstock composition 
(C, H, N, O, and ash), the reaction temperature, and time 
were considered as inputs for all the hydrothermal 
conversions. For HTC, the biochar yield, HHV, C, N, and H 
contents were identified as multi-outputs. The 
considered properties of the product (biocrude) from 
HTL were yield, C, N, and HHV. In terms of HTG, the 
composition (yields of H2, CH4, CO2, and CO) and HHV of 
syngas were the outputs for model development. For 
pyrolysis and gasification systems, the SVR and GBR 
methods were found to be suitable for modelling. The C, 
H, N, O, ash, reaction temperature, and time were inputs 
for pyrolysis, and the C, H, N, O, ash, reaction 
temperature, steam-to-biomass ratio, and equivalence 
ratio were gasification model inputs. The yield, HHV, C, 
N, and H contents of pyrochar from pyrolysis were 

 
Fig. 1. The overall framework of machine learning modeling 
and optimization with the objectives of minimizing energy 
consumption and maximizing energy generation (solid 
product includes dry waste after dewatering and dring (DD) 
and hydrochar from HTC, HTL, and HTG; liquid product 
contains the biocrude from HTL and HTG, the gas product 
includes the biogas from AD and syngas from HTL and HTG ). 
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determined as outputs, and the yields of H2, CH4, CO2, 
CO, and HHV of syngas were the outputs for gasification 
modeling. When the hyper-parameters were determined 
for each conversion model, the 80% data points in each 
dataset was used to retrain the ML model individually. To 
understand the prediction performance of the 
developed model, the R2 and RMSE were used to 
quantify the prediction accuracy [9].  

2.3 Optimization modeling based on input and output 
energy 

Although the energy can be produced by waste 
valorization technologies, the energy intake is not able to 
be avoided. Finding the optimal conversion conditions to 
trade off the input and output energy is significant for 
net energy production and conversion technology 
selection for specific biomass waste. Therefore, a well-
known optimization method, i.e., Particle Swarm 
Optimization [10], was employed to cooperate with 
developed ML models to achieve optimal conversion 
conditions for maximizing the net energy production. In 
detail, the life-cycle energy inputs, including the reactor 
hearting (Q_reactor_heat), feedstock or hydrochar 
drying (Q_dring), the heat for biocrude extraction 
(Q_oil_ext), the equivalent heating of hexane as solvent 
for biocrude extraction (Q_hexane_eq), the basic 
electricity consumption of conversion process (E_basic) 
and biocrude extraction (E_oil_ext), were carefully 
considered for optimization and downstream 
comparison. For the output energy, the heating energy 
was calculated based on the HHV and the yield of 
products from conversions. To make the results 
comparable, the functional unite of 1-ton fresh waste 
was identified. 

During the optimization, different conversion 
systems needed to be considered individually. For the 
hydrothermal conversions, three types of products, i.e., 
hydrochar, biocrude, and syngas, were simultaneously 
produced, while we only focused on the optimization of 
the specific process, and other products were just 
predicted based on the specific process optimization 
results. For example, when we targeted the HTL, the 
energy from biocrude was only identified as the objective 
for optimization to obtain the optimal conditions of HTL. 
The energy outputs from HTC and HTG were just 
calculated based on the optimal conditions of HTC. In the 
case of pyrolysis and gasification, the biochar can be 
separated easily, while the combustible oil vapor and gas 
are mixed together under high reactor temperature. 
Therefore, the energy from oil and gas is calculated 
together from the energy balance. For the AD system, 

the biogas yield and HHV were predicted from optimal 
conditions to calculate the energy output. 

3. RESULTS AND DISCUSSION 

3.1 Model performance 

Based on the required information for post-energy 
production and consumption analysis, multiple tasks 
were indeed necessary to be identified for each 
technology modeling. The ML models equipped with the 
optimal hyper-parameters were trained with 80% data 
points of datasets for different conversions. 

 
Table 1. Multi-task prediction performance of ML models for 

different wet conversion technologies. 

Conversions Prediction targets 
Test 
R2 

Test 
RMSE 

AD CH4 yield (ml/g wet) 0.89 20.74 
 CO2 yield (ml/g wet) 0.86 39.06 
 Biogas HHV (MJ/m3) 0.82 2.21 

HTC Hydrochar yield (%) 0.84 7.37 

 Hydrochar HHV 
(MJ/kg) 

0.88 2.18 

 Hydrochar C (%) 0.90 4.30 
 Hydrochar N (%) 0.94 0.52 
 Hydrochar H (%) 0.82 0.51 
 Hydrochar O (%) 0.85 4.07 
HTL Biocrude yield (%) 0.82 5.50 
 Biocrude HHV (MJ/kg) 0.74 1.89 
 Biocrude C (%) 0.71 2.37 
 Biocrude N (%) 0.71 0.99 

HTG 
Syngas _CO2 yield 
(mol/kg) 

0.96 1.04 

 Syngas _CH4 yield 
(mol/kg) 

0.94 0.57 

 Syngas _CO yield 
(mol/kg) 

0.81 0.57 

 Syngas _H2 yield 
(mol/kg) 

0.91 1.67 

 Syngas _HHV (kJ/mol) 0.81 37.66 
Pyrolysis Pyrochar yield (%) 0.92 5.71 
 Pyrochar HHV (MJ/kg) 0.93 2.25 
 Pyrochar C (%) 0.96 4.70 
 Pyrochar N (%) 0.92 0.41 
 Pyrochar H (%) 0.90 0.46 

Gasification 
Syngas _H2 yield 
(mol/kg) 

0.86 5.94 

 Syngas _CH4 yield 
(mol/kg) 

0.86 0.46 

 Syngas _CO2 yield 
(mol/kg) 

0.79 3.83 

 Syngas _CO yield 
(mol/kg) 

0.83 2.12 

  Syngas _HHV (kJ/mol) 0.83 30.94 
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The test performance of the trained models was 
evaluated with the left 20% data. For the AD modeling, 
the test R2 were 0.89, 0.86, and 0.82 for CH4 yield, CO2 
yield, and biogas HHV predictions with corresponding 
RMSE of 20.74 mL/g wet waste, 39.06 mL/g wet waste, 
and 2.21 MJ/m3 respectively. In terms of hydrothermal 
conversions, the R2 for hydrochar property (5 targets) 
prediction was 0.82-0.94, for biocrude property (4 
targets) was range from 0.71 to 0.82, and for HTG_syngas 
(5 targets) was located between 0.81-0.96. in the case of 
pyrolysis and gasification, the R2 for the biochar and 
syngas property prediction was 0.82-0.96 and 0.79-0.86, 
respectively. The above results indicated that the 
prediction performances of ML models established for 
the waste conversion technologies were accepted to 
predict the property of products for downstream energy 
profile analysis. More details are shown in Table 1. 

3.2 Food waste valorization as a case study for energy 
comparison 

Based on the optimal conditions of each waste 
conversion technology. The energy inputs and outputs 
were investigated in detail by employing food waste as 
an example of biomass waste for a case study. The 
energy consumption of the six conversion technologies 
was presented in Fig. 2a. The AD process consumed the 
lowest energy which is less than 500 MJ for treating 1 ton 
of food waste. However, for other thermal conversions, 
the energy inputs were much higher than AD due to the 
heating needed to heat the reactors. Among the 
hydrothermal conversions, it was found the energy 
inputs were dominated by the heating step. However, 
although much more heating energy was needed for HTL, 
the total energy consumption of HTC and HTL were close 
to each other, because extra energy was needed to dry 

the hydrochar from HTC [11]. For pyrolysis and 
gasification, the heat for drying of food waste was the 

most significant part for energy consumption owing to 
the high-water content in food waste.  

For the energy generation (Fig.2b), the AD and HTC 
was the lowest, and thermal conversions achieved a 
similar amount of overall energy. However, by trade-off 
the input energy, the AD showed the highest potential 
with respect to the return of energy investment, while 
the digestate from AD may need other steps for further 
treatment [4]. For the thermal conversions, all the 
achieved products could be utilized directly. Therefore, it 
is indeed to consider the ultimate impacts of the 
conversions when we make decisions for the biomass 
waste treatment. Moreover, the life-cycle carbon 
emission should be also considered. Therefore, in our 
near future work, we will further investigate carbon 
emission and the potential of integrated technologies. 

4. CONCLUSIONS 

Six datasets were systematically complied based on 
the conversion of hydrothermal carbonization (HTC), 
hydrothermal liquefaction (HTL), and hydrothermal 
gasification (HTG), anaerobic digestion (AD), pyrolysis, 
and gasification for the ML predictive model 
development and post energy profile analysis. The 
prediction performance for all the targets from the six 
technologies was acceptable with R2 > 0.71 and in which 
most of them > 0.80. The properties of energy products 
were predicted based on the optimal conditions 
achieved from ML-based optimization for downstream 
energy profile evaluation. It was found that the AD 
showed the highest potential with respect to the energy 
return of investment. For thermal conversions, the input 
energy was dominated by the reactor heating and 
feedstock drying for the hydrothermal and dry-thermal 
conversions, respectively. The integrated technology 

strategy will be investigated to evaluate both life-cycle 
energy profile and global warming potential in near 

  
Fig. 2. Energy consumption and production of conversion technologies based on ML-optimization with food waste as feedstock. 
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future. Such kinds of evaluation will benefit the decision-
making of treatment technologies selection and system 
design of biomass waste valorization. 
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