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ABSTRACT 
Lithium-ion batteries (LIB) are vital components of 

modern electric vehicles and load management in smart 
grids due to their relatively high energy density, power 
density, and efficiency. It is important that onboard 
battery management systems in battery electric vehicles 
have accurate battery state of charge (SOC) information 
to gauge the remaining vehicle range and minimize 
battery degradation through power management. 
However, owing to highly dynamic vehicle driving habits 
and the nonlinear nature of SOC relative to other battery 
parameters such as current, voltage, and temperature, 
SOC is unable to be measured directly and is difficult to 
be accurately estimated in real-time. This article 
proposes a novel Li-ion battery SOC estimation method 
through a Deep Feedforward Neural Network Multimode 
Ensemble (DNN-ME). K-means clustering is used to 
separate the training data into differentiable data 
subsets, which are then each fed into N deep 
feedforward neural network (DNN) base learners. The 
final ensemble output through weighted averaging is less 
susceptible to error from weight initialization variation 
than single models, ensuring greater prediction accuracy. 

 
Keywords: Ensemble learning, state-of-charge, deep 
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NONMENCLATURE 

Abbreviations  

SOC State of Charge 

DNN Deep feedforward neural network 

DNN-ME Deep feedforward neural network 
multimode ensemble 

SVR 
 

Support vector regression 
 

1. INTRODUCTION 
Lithium-ion batteries (LIB) are vital components of 

modern electric vehicles and load management in smart 
grids due to their relatively high energy density, power 
density, and efficiency. Battery state-of-charge (SOC), 
defined as the ratio of the remaining charge of a battery 
to its nominal capacity, is an important indicator in 
electric vehicle battery management systems for gauging 
the remaining vehicle range and minimizing battery 
degradation in power management. However, owing to 
highly dynamic vehicle driving habits and the nonlinear 
nature of SOC relative to other battery parameters such 
as current, voltage, and temperature, battery SOC is 
difficult to accurately estimate during the online 
operation of electric vehicles [1].  

Existing methods for online SOC estimation include 
model-driven and data-driven techniques. Traditional 
model-driven SOC estimation techniques such as 
Coulomb counting [2] and open-circuit voltage (OCV) [3] 
are accurate but have been shown to be impractical for 
real-time applications. Model-driven algorithms such as 
Extended Kalman Filters, particle filters, least-square 
filters, and adaptive Luenberger observers require a 
thorough understanding of physical processes in the 
battery system and may need manual parametrization 
for different battery types. Data-driven SOC estimation is 
based on machine learning techniques that train on large 
quantities of battery data and are computationally less 
expensive due to being composed of a series of matrix 
multiplications, as opposed to potentially having to solve 
differential equations in model-driven methods. Overall, 
these techniques outperform model-driven methods, 
however, generalization capability will be low if data-
driven models are only trained on a single type of driving 
condition [4]. Furthermore, training on a variety of 
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driving conditions each with different SOC relationships 
will decrease overall model accuracy.  

Ensemble learning addresses these shortcomings by 
combining multiple weak learners to achieve a more 
accurate prediction than any single model usually by 
averaging the predictions of each base model. The final 
ensemble output will be less susceptible to error from 
weight initialization variation than single models, which 
decreases variation in prediction accuracy. 

However, these methods do not account for 
variations in driving conditions in real-time applications. 
[5] proposes an ensemble model that first clusters the 
training data, where a support vector regression (SVR) 
base model is built on each data subset. The prediction 
of each base model for a given time step is then weighted 
dynamically by the distance of the test data to the center 
of its training data subset.  

This paper follows the method in [5] by proposing a 
novel Li-ion battery SOC estimation method through a 
Deep Feedforward Neural Network Multimode 
Ensemble (DNN-ME), where deep feedforward neural 
networks (DNN) are used in place of SVRs in the 
ensemble to increase prediction accuracy. The proposed 
ensemble model is expected to outperform a single DNN 
model and achieve good SOC estimation accuracy.  

2. METHOD 

2.1 Deep Feedforward Neural Networks 

Although in principle traditional feedforward neural 
networks with two layers of transformations can learn 
any nonlinear relationship, DNNs with deeper 
architectures have allowed for considerable 
improvements in prediction accuracy. Despite 
drawbacks in longer training times, DNNs still allow for 
fast online computational speeds due to being composed 
of a series of matrix multiplications. 

DNNs are composed of three parts: the input layer, 
hidden layers, and the output layer. Battery indicators 
such as voltage, current, and ambient temperature are 
fed into the input layer where they are transformed 
through L hidden layers, each with a given number of 
neurons. The output layer holds a single neuron in SOC 
estimation, which holds the predicted SOC value for a 
time step.  

Training datasets for DNNs in SOC estimation can be 
generalized as 𝐷 = {(𝜓(1), 𝑆𝑂𝐶 (1))), ( 𝜓(2),

𝑆𝑂𝐶 (2)), … , (𝜓(𝑡), 𝑆𝑂𝐶 (𝑡))}  where 𝑡  is the given 

time step in the battery cycle, 𝑆𝑂𝐶(𝑡) is the true SOC 
value at 𝑡  derived through Coulomb counting, and 
ψ(t) is the input vector consisting of 𝑉(𝑡), 𝐼(𝑡), 𝑇(𝑡),

𝑉𝑎𝑣𝑔(𝑡) and 𝐼𝑎𝑣𝑔(𝑡) representing the normalized voltage, 

current, temperature, average voltage, and average 
current at t respectively. 𝑉𝑎𝑣𝑔(𝑡) and 𝐼𝑎𝑣𝑔(𝑡) are 

included to encode time dependencies in the network 
model.  

The output or activation of each neuron in the 
hidden layers can be defined as 

 

ℎ𝑘
𝑙 (𝑡) = 𝜂 (∑ 𝑤𝑗,𝑘

𝑙 ℎ𝑘
𝑙−1(𝑡) + 𝑏𝑘

𝑙

𝑘

) 

 

for neuron 𝑘  in layer 𝑙 , where 𝑤𝑗,𝑘
𝑙

 is the weight 

applied to the activation value of neuron k in the 

previous layer. A bias 𝑏𝑘
𝑙  is added to the sum of all 

weighted activation before an activation function 𝜂 is 
applied.  

When training the DNN, a forward pass is when all 
the data pairs in the dataset 𝐷  have been passed 
through the DNN, after which a backward pass updates 
the weights and biases in the network to decrease the 
overall loss. An epoch is composed of a forward and 
backward pass, where the model has seen and trained 
on all the training pairs in the dataset. It should be 
clarified, however, that only a forward pass is used when 
validating or testing the model on unseen data.   
 

2.2 Data Clustering 

K-means clustering is used to first cluster the battery 
data into N differentiable data subsets such that each 
subset can represent a different driving condition for 
which a DNN can be specialized. As each DNN base 
learner is trained on a different data subset, N is also the 
number of base learners in the ensemble. Thus, the data 
subsets can be represented by 𝐷𝑛(𝑛 = 1, 2, … , 𝑁) with 
subset 𝐷𝑛 having a cluster center 𝐶𝑛. 

 

2.3 Training of Base Learners 

Each DNN base learner in the proposed DNN-ME has 
three hidden layers, each with 4 neurons. The specific 
activation function chosen for each base learner is the 
Leaky ReLU function, which addresses the dying ReLU 
problem in regular ReLU by adding a small positive slope 
for negative values instead of returning zero. It is defined 
below: 

 

𝜂(𝑥) = {
−0.05𝑥, 𝑥 ≤ 0

𝑥, 𝑥 > 0
 

ISSN 2004-2965 Energy Proceedings, Vol. 18, 2021



 3 Copyright © 2021 ICAE 

 
The positive slope for 𝑥 ≤ 0 was optimized to be 0.05 
after experimentation. 

The mean squared error (MSE) loss function is 
chosen to calculate the overall loss in each DNN, which is 
used by the Adam backpropagation optimizer to update 
all the weights and biases in each DNN. When training 
the proposed DNN-ME model, each DNN base learner is 
trained for 50 epochs using a 0.0001 learning rate, 
although the number of epochs could be increased to 
achieve better accuracy. 

 

2.4 Integration of Ensemble 

The SOC prediction outputs of each DNN base 
model are combined through a weighted averaging 
method, which outputs the final ensemble prediction. 
The weight applied to each base DNN is inversely 
proportional to the Euclidean distance from the cluster 
center 𝐶𝑛 of the DNN’s training data subset 𝐷𝑛 to the 
test data p, which weighs the importance of each base 
learner trained on the similarity of its training data 
subset to the input vector data at time step t. Thus, the 
final ensemble output can be described as: 

 

𝐻(𝑝) = ∑ 𝑤𝑛ℎ𝑛(𝑝)
𝑁

𝑛=1
∑ 𝑤𝑛

𝑁

𝑛=1
⁄  

𝑤𝑛 =
1

‖𝐶𝑛 − 𝑝‖𝛼
 

 

where 𝐻(𝑝) is the ensemble SOC prediction, 𝑤𝑛 is the 
weight applied to base model 𝑛 , ℎ𝑛(𝑝)  is the SOC 
prediction for base model 𝑛 , and ⍺ is a weight 
parameter that is set to 12 based on the optimization 
process in [5]. 

3. EXPERIMENTATION 
An experimental method is used to evaluate the 

performance of the DNN-ME. First, battery drive cycle 
data with various ambient temperatures is augmented 
with Gaussian noise. Then, the number of base models in 
the DNN-ME is optimized through an iterative approach. 
The best performing ensemble model is then compared 
with a single DNN to evaluate estimation performance.  

 

3.1 Drive Cycles 

Training data was obtained from [6], where a 3A LG 
18650HG2 lithium-ion battery cell was tested under 
various drive cycles and temperature conditions in a 

controlled thermal chamber. In order to test 
generalization capability on new driving conditions, the 
ensemble model is trained and validated using different 
battery drive cycles. The models are trained using the 
high acceleration US06 drive cycle and tested with the 
Urban Dynamometer Driving Schedule or UDDS and the 
LA-92 drive cycles. All drive cycles are repeated for 
ambient temperatures 10C, 25C, and 40C. 

Before use, the input data are standardized and 
moving averages of the previous values of V and I in the 
previous 400 time steps are taken to produce 𝑉𝑎𝑣𝑔and  

𝐼𝑎𝑣𝑔. When 𝑡 ≤ 400,  

 

𝑉𝑎𝑣𝑔 =  ∑  𝑉(𝑡) / 𝑡
400

𝑡=1
 

 

𝐼𝑎𝑣𝑔 =  ∑  𝐼(𝑡) / 𝑡
400

𝑡=1
 

 

3.2 Data Augmentation 

To obtain adequate training data and make the 
models robust for battery sensor error in real world 
applications, Gaussian noise with μ = 0 and σ = 0.03 is 
introduced to the US06 training dataset. Every V, I, and T 
value in the US06 dataset is thus augmented and 𝑉𝑎𝑣𝑔 
and 𝐼𝑎𝑣𝑔  are recalculated. The training dataset is 
augmented twice such that the final dataset is three 
times the size of the original. 

 

3.3 Optimization 

The number of DNN base learners N must be 
optimized to find the best ensemble configuration. The 
DNN ensemble is trained on the US06 training dataset 
and validated using the UDDS dataset. This is repeated 
iteratively from 𝑁 = 1 to 𝑁 = 10 , and the mean 
absolute error (MAE) for each ensemble is noted. As can 
be seen in Figure 1, the MAE drops to its lowest of 4.6% 
at 𝑁 = 5 , before increasing. This increase in error is 
attributed to the decreasing amount of training data 
available for each base learner as the number of dataset 
partitions increases. The best performing DNN-ME with 
5 base learners is selected for final comparison. 
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Table 1 SOC Estimation Results 
 

 
Driving  
Conditions 

Mean Absolute Error 

DNN-ME Single DNN 

UDDS 0.0460 0.0510 

LA92 0.0367 0.0422 

 
 

 
Fig. 1 DNN-ME Loss for Different Numbers of Base 
Learners 

 

3.4 SOC Estimation Performance 

The MAEs of the DNN-ME and a single DNN model 
is compared when trained on the same US06 dataset and 
tested using the UDDS and LA-92 datasets. All other 
hyperparameters are kept the same. The results in Table 
1 show that the DNN-ME model achieves lower 
estimation error than a single DNN model for both drive 
cycles. 

4. CONCLUSION 
A novel ensemble model using DNNs as base 

learners was proposed for Li-ion battery SOC estimation, 
using a clustering method to dynamically adapt the 
weights of its base learner predictions according to 
different driving conditions in real-time. Findings 
indicate the proposed method has superior estimation 
accuracy compared to a single DNN model when tested 
on unseen driving conditions. Further investigation is 
needed to optimize ensemble hyperparameters and to 

compare the DNN-ME to other ensemble algorithms 
such as bagging and boosting, as well as other single 
machine learning models such as SVRs, extreme learning 
machines, and recurrent neural networks. Future 
scholarship should consider the additional 
computational costs of ensemble methods and whether 
that impacts their real-world application. 
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