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ABSTRACT 
Based on the heat demand of users, adjusting the 

water supply temperature and regulating the heating 
system can achieve matching the heat dissipation of heat 
dissipation equipment of heat users with the demand 
heat load of users and prevent energy wastage caused by 
high room temperature. This paper proposes a model 
and method for determining the water supply 
temperature of heat sources based on load and flow 
constraints for specific engineering cases, and uses LSTM 
deep neural network and multiple regression to simulate 
and analyze the water supply temperature. The results 
show that the deviation of LSTM is 7.22% compared to 
the actual value, which is much lower than the 18.20% of 
multiple regression. 
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1. INTRODUCTION 
Heat loss arising from uneven heating and cooling is 

one of the common problems in the operation and 
regulation of central heating systems in China. It is 
basically caused by the inability of flow and water supply 
temperature to change accurately in response to 
changes in customers’ demand for load [1]. In order to 
ensure the quality of the heat supply and to meet the 
demand of the heat users, the heat supply system needs 
to be regulated for heat supply. The operational 
regulation of central heating involves quantitative 
regulation, which changes only the flow of the heating 
system, and qualitative regulation, which changes only 
the temperature of the water supply [2] . This paper 

focuses on the qualitative regulation of the heating 
system. The current common practice of calculating the 
water supply temperature is to draw a heating curve 
based on data or by building a mathematical model 
based on the heat transfer equation. For example, Wang 
et al [3] and Jin et al [4] set a heating curve in a heating 
boiler control system so as to regulate the boiler 
discharge temperature according to the outdoor 
temperature. Jie et al [5] built a mathematical model of 
the water supply temperature based on the heat transfer 
equation. Bolonina A et al [6] built a mathematical model 
of a district heating system for cogeneration to regulate 
the water supply temperature. 

However, with the development of smart heating 
technology, more and more scholars have applied 
artificial intelligence methods to water supply 
temperature simulation and prediction. Currently, neural 
networks such as BP [7, 8], Elman [7] and RBF [9] have 
been used for water supply temperature modelling. Hu 
et al [7] established a BP water supply temperature 
model with a MAPE of 5.66% and an Elman water supply 
temperature model with a MAPE of 4.32%. Bu et al [9] 
established a water supply temperature model based on 
RBF and improved it. In addition, Li et al [10] proposed a 
water supply temperature prediction model based on 
tensor distance. Li et al [11] obtained the optimized 
setting value of water supply temperature on the 
primary side based on DHP algorithm. Laakkonen L et al 
[12] used an adaptive algorithm modeling to cut the peak 
heat load and optimize the water supply temperature. 
Fan et al [13] used Tensok for coupled hydraulic-thermal 
simulation and calculated the water supply temperature 
on the primary side. The existing water supply 
temperature models based on neural networks and 
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other artificial intelligence techniques are trained and 
predicted using samples from the same heating season.  

Long Short-term Memory (LSTM) neural networks 
have been used to predict the heat load of heating 
systems. The water supply temperature is related to the 
heat load [2]. Xue et al [14, 15] point out that the heating 
load has time characteristics on three time scales, 
namely hourly, daily and weekly, and constructed a heat 
load prediction model based on LSTM neural network. Xu 
et al [16] learned the intrinsic connection of the heat load 
in the time dimension based on LSTM models and made 
short-term prediction of the heat load. By comparing 12 
models, Wang et al [17] found that LSTM model was the 
most accurate model for predicting heat load in deep 
networks. Considering the advantages of LSTM in time 
prediction and the characteristics of time series 
prediction[18], this paper proposes that the LSTM model 
can be trained with samples from historical heating 
seasons to predict the water supply temperature for the 
next heating season. 

The aim of this study is to establish a water supply 
temperature model based on LSTM deep neural 
network. Under the flow constraint, the demand water 
supply temperature is calculated based on the demand 
load, so as to regulate the heating system and save 
energy while meeting the heating demand. 

2. MODEL AND METHOD 

2.1 Research methodology  

In this paper, in order to realize on-demand heating 
and avoid energy waste caused by the mismatch 
between supply and demand in heating systems, a rolling 
model based on LSTM deep neural network was 
established for the water supply temperature of heat 
stations [14, 19, 20] and applied to the centralized 
heating system of a university to verify its validity by 
comparing the model value with the actual value. The 
framework of the method is shown in Figure 1. 

2.2 Regulation of the heating system 

Qualitive regulation of the heating system is to keep 
the same amount of circulating water in the system while 
changing the water supply temperature, so that the heat 
dissipation of heating customers' cooling equipment 
adapts to the changing law of customer demand for heat 
load, in order to prevent heating customers from 
experiencing too high or too low room temperature, 
resulting in a waste of energy. As can be seen from Figure 
2, there is a relationship between the water supply 
temperature and the heat load. Gustafsson et al [21] 

indicate that the water supply temperature and the flow 
of circulating water are the easiest to control, so a 
heating system operation regulation strategy can be 
developed based on these two heating parameters [5]. 

 

Fig.1 Methodological framework of this study 

 
Fig.2 Correlation between water supply temperature and 

heat load 

2.3 LSTM neural networks 

Traditional RNN recurrent neural networks have 
been used to reduce the learning difficulty and prevent 
gradient explosion due to gradient concatenation during 
gradient backpropagation [18, 22, 23]. The LSTM is still 
computed according to the input layer X and the output 
h of the previous hidden layer, and its internal structure 
is shown in Figure 3. 

Gates in the LSTM model can selectively control the 
flow of information, and there are three kinds of gates: 
forgetting gate ft, input gate it, and output gate 𝑂t. It 
usually consists of a sigmoid neural network and a point-
wise multiplication operation. σ function has an output 
of 0 to 1, which is consistent with off and on in the 
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physical sense when the output is 0 or 1; tanh has an 
output of -1 to 1, which is consistent with the 0-centred 
feature distribution in most scenarios, and the gradient 
converges faster than the σ function as it approaches 0 
[22]. The optimal (U, W, b) parameters of the three gates 
(forgetting gate, input gate, output gate) in the LSTM 
deep neural network model are obtained by continuous 
self-learning and correction through sample training, 
testing and sample rolling prediction for calibrating the 
model[23]. 

 

Fig.3 Internal structure of LSTM deep learning neural network 

 

2.4 Establishment of the LSTM water supply 
temperature model and evaluation criteria 

2.4.1 Data pre-processing  

Taking the energy station of a university in Tianjin as 
the research object, various monitoring data such as 
water supply temperature, instantaneous flow and 
actual heating load were obtained from the intelligent 
heat network control platform with an interval of 6 min 
for data collection. The median average filtering 
algorithm was used to smooth the water supply 
temperature within 1 d by noise reduction. The average 
of the maximum and minimum values was taken as the 
water supply temperature for the day after removing the 
series data within 1d [16].  

2.4.2 Establishment of the LSTM water supply 
temperature model  

The LSTM water supply temperature model was 
built with inputs of heat load, flow, actual water supply 
temperature and time, and outputs of predicted water 
supply temperature. The model was trained and tested 
on a rolling basis every 7 days, and the corresponding (U, 
W, b) parameters in the three gates of the LSTM model 
were continuously corrected to obtain the optimal (U, W, 
b) parameters for calibrating the model. The logic 

training diagram of LSTM deep neural network is shown 
in Figure 4[24]. 

 

Fig. 4 Logic training diagram of LSTM deep neural network 

 

2.4.3 Evaluation criteria for the LSTM water supply 
temperature model  

The commonly used evaluation criteria for the 
water supply temperature model are mean absolute 
percentage error (MAPE) and mean absolute error 
(MAE)[14], which are calculated by the following 
equations. 

𝑀𝐴𝑃𝐸 =  
1

𝑁
∑ |

𝑌𝑝𝑖−𝑌𝑟𝑖

𝑌𝑟𝑖
| × 100%   (1) 

𝑀𝐴𝐸 =  
1

𝑁
∑ |𝑌𝑝𝑖 − 𝑌𝑟𝑖 |   (2) 

3. RESULTS AND DISCUSSION  

3.1 Training and testing of the LSTM model  

The proposed LSTM water supply temperature 
model was applied to a university energy station, as 
shown in Figure 5, for the heating season 2020-2021, 
supplying 112 d of valid data, with the first 84 d of 
samples by time series as the training set and the last 28 
d of data as the test set. 

 

 
Fig.5 Simplified physical model of the central heating system  

The actual operating load and flow of this energy 
station for the heating season 2020-2021 are shown in 
Figure 6, and the parameter ranges of the training and 
test sets are listed in Table 1. 
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Fig.6 Actual heat load and flow ( 2020-2021 heating season ) 

 
Table 1 Parameter ranges for the train and test sets 

Sample Heat 
Load/MW·h 

Flow/m³ Actual Water 
Supply 

Temperature/℃ 

Train  85.6~216.2 21484~27826 35.0~44.7 

Test  69.8~121.1 20644~21628 31.3~37.5 

Figure 7 shows the simulated water supply 
temperature applied to the LSTM water supply 
temperature model for this case with a MAPE = 1.94% 
and MAE = 0.67. For 90% of the samples, MAPE = 1.56% 
and MAE = 0.59, within an absolute deviation of ±1°C, as 
displayed in Table 2. Figure 8 (a) shows the absolute 
deviation of the simulated value from the actual value 
and (b) shows the ratio of the simulated value to actual 
value. Table 3 shows the deviation analysis of the 
simulation results. The deviation between simulated 
water supply temperature and actual value was within 
1°C for 90% of samples using this model, and the 
deviation of all samples was within 1.5°C. Li Ying Li et al 
[10] predicted a deviation of 2.08°C between the water 
supply temperature and the actual one based on the 
tensor distance model, and found that the proposed 
LSTM water supply temperature model demonstrated 
good simulation effect. 

 
Fig.7 Actual and simulated value 

 

 
(a) Absolute deviation     (b) Ratio of simulated value  

to actual value 

Fig.8 Absolute deviation and ratio of simulated value to actual 

value 

 
Table 2 Errors in simulation results ( 2020-2021 heating 

season ) 

Sample 
All samples 

Screened samples 
(90%) 

MAPE 1.94% 1.56% 
MAE 0.67 0.59 

3.2 The water supply temperature predicted using LSTM 
models 

The proposed LSTM water supply temperature 
model was applied to a university energy station, with a 
total of 56 d valid samples for the 2019-2020 heating 
season as the training set and 113 d valid samples for the 
2020-2021 heating season as the test set. The actual 
operating load and flow of this energy station for the 
2019-2020 heating season is shown in Figure 9, and the 
parameter ranges for the training and test sets are listed 
in Table 4. The model simulation results were compared 
to those of a multiple regression water supply 
temperature model with the same inputs and outputs, as 
shown in Figure 10. 

 
Table 3 Parameter ranges for the train and test sets 

Sample Heat 
Load/MW·h 

Flow/m³ Actual Water 
Supply 

Temperature/℃ 

Train  54.4~138.4 19297~27038 25.9~40.4 

Test  69.8~216.2 19297~27038 31.3~44.7 

 

 
Fig.9 Actual heat load and flow ( 2019-2020 heating season ) 
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Figure 10 shows the simulated water supply 
temperatures for the two water supply temperature 
models being applied to this case versus the actual 
operating water supply temperatures. For the LSTM 
model, MAPE = 7.22% and MAE = 2.81; for the multiple 
regression model, MAPE = 18.20% and MAE = 7.61, as 
shown in Table 4. As shown in Figure 8, the model error 
is larger than that of the 2019-2020 heating season due 
to the serious sample loss, but it is still within the 
acceptable range, much smaller than the multiple 
regression model error. Looking at the sample from 
2020/12/16 - 2021/1/13, the multiple regression model 
error was very large when the water supply temperature 
increased abruptly from 36°C~40°C to 40°C~44°C, and 
this part of the fluctuation was well predicted when the 
LSTM model was applied to the case. The results show 
that the proposed LSTM water supply temperature 
model exhibits good simulation effect when applying the 
samples from the historical heating season as the 
training set to predict the water supply temperature for 
the next heating season. 

Table 4 Errors in simulation results (2020-2021 heating 
season) 

Model 
LSTM 

Multiple 
Regression 

MAPE 7.22% 18.20% 

MAE 2.81 7.61 

 

 
Fig.10 Actual and simulated values (2020-2021 heating season) 

3.3 Application of the LSTM model to the regulation of 
the actual heating system  

The proposed LSTM water supply temperature 
model was applied to this energy station for the heating 
season 2020-2021 to derive the demand water supply 
temperature under the actual flow constraints to meet 
the demand heat load of users, thus providing regulation 
of the heating system. Figure 11 shows the actual heat 
load and water supply temperature and demand heat 
load and demand water supply temperature. 

 
Fig.11 Actual and demand values of heat load and supply 

temperature 

 
Fig. 12 Ratio of demand load to actual load and demand 

supply temperature to actual supply temperature ( 2020-
2021 heating season )  

Figure 12 shows the ratio of demand load to actual 
load and the ratio of demand water supply temperature 
to actual water supply temperature. According to the 
proposed LSTM water supply temperature model for 
adjustment of the actual heating system of a university, 
the water supply temperature was reduced by 7.69%, 
with an average decline of 3°C; the heat load was 
reduced by 3811.59MW·h and 23.67% in total, with 
significant energy saving effect. 
 

4. CONCLUSION 
In this paper, a water supply temperature model 

based on LSTM deep neural network was proposed, and 
the model was applied to a university energy station and 
compared with a multiple regression model. The results 
show that the deviation of LSTM is 7.22% compared to 
the actual value, which is much lower than the 18.20% of 
multiple regression. 

Under certain flow constraints, the model and 
method were used to calculate the demand water supply 
temperature based on the demand load of heat users, so 
that the heating system was regulated to match the heat 
supply with the required load of users and save energy 
while meeting the heat supply demand. 
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