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ABSTRACT 
 The durability of Proton exchange membrane fuel 

cell (PEMFC) is one of the technical challenges restricting 
its commercial application. In order to enhance the 
reliability and durability of PEMFC, a feature extraction 
method based on bi-direction long short-term memory 
(Bi-LSTM) and bi-direction gated recurrent unit (Bi-GRU) 
is proposed in this paper, which can effectively extract 
deeper degradation features. Feature extraction model 
linked with echo state network (ESN), which form a 
fusion prognostic framework to realize short-term 
degradation prediction and remaining useful life (RUL) 
estimation. For short-term prediction, only the first 200 
hours of voltage degradation data were used for training 
can achieve an acceptable and accurate prediction, 
which the root mean square error (RMSE), mean 
absolute error (MAE) and coefficient of determination 
(R2) are 0.0235, 0.0195 and 0.9822, respectively. 
Comparing with traditional machine learning methods, 
proposed fusion prognostic framework shows the best 
predictive performance. Besides, a 100-step sliding 
windows method based on the fusion prognostic 
framework is used to implement RUL estimation. The 
results show that the percentage error (𝐸𝑟) is only 1.22% 
with the first 200 hours training data. The proposed 
method has great significance for guiding online testing 
and health management of PEMFC.  
 
Keywords: PEMFC, Prognostic, Remaining useful life, Bi-
LSTM-GRU, Deep learning  
 

NONMENCLATURE 

Abbreviations  

Bi-LSTM 
Bi-GRU 
ESN 

bi-direction long short-term memory 
bi-direction gated recurrent unit 
echo state network 

PSO 
RUL 

particle swarm optimization 
remaining useful life 

Symbols  

A 
V 
t 

Current 
Voltage  
Time Step 

1. INTRODUCTION 
PEMFC is considered to be one of the most promising 

alternative power supply for automotive power sources, 
which has the characteristics of high energy conversion 
efficiency, high power density, low operating 
temperature, less operating noise, clean and pollution-
free, etc [1-4]. However, short lifespan blocks the large-
scale commercialization of PEMFC [1,5-8]. Therefore, 
Prognostic and Health Management (PHM) technology is 
needed to predict the health status of PEMFC throughout 
the whole life cycle to extend the lifespan and enhance 
the performance of PEMFC. 

2. PAPER STRUCTURE  

2.1 Introduction 

In general, there are two approaches for PEMFC 
prognostic: model-based methods and data-driven 
methods [9]. Model-based method rely on physical 
modeling of PEMFC degradation behavior, whereas are 
highly complex and require a depth understanding of the 
internal reaction mechanism of PEMFC. And the model 
varies with different types of fuel cells, which make these 
prognostic methods hard to be transferred to other 
types of fuel cells. In contrast, the data-driven approach 
simply uses historical data to predict performance 
degradation trends of PEMFC, which can avoid complex 
physical models and having much more flexibility and 
applicability comparing to the model-based method. 
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In this paper, a comprehensive prognosis method 
based on Bi-LSTM-GRU and ESN is proposed innovatively, 
which can perform short-term degradation prediction 
and estimate RUL. The short-term prediction and RUL 
estimation process are shown in Fig 1 The use of Bi-LSTM 
can effectively avoid the problem of gradient explosion 
and disappearance, and be more suitable for capturing 
the information of adjacent time nodes [10-12]. The Bi-
GRU tends to grasp overall time series information [13]. 
ESN replaces the traditional flatten layer as the final 
output layer. In addition, ESN introduces a large number 
of sparse neurons to further reduce the risk of 
overfitting, which is a simple linear fitting without 
considering the excessive training time. 

 
Fig 1 (a) Short-term degradation prediction; (b)RUL 

estimation 

This paper is organized as follows: Section 2.2 
describe two experimental PEMFC stacks. The fusion 
prognostic framework is introduced in Section 2.3 The 
experimental results and discussion are shown in Section 
2.4 The conclusion of this paper is given in Section 2.5 

2.2 PEMFC system  

The BI-LSTM-GRU and ESN fusion prognostic method 
is verified by IEEE PHM 2014 data challenge [14], where 
the data includ FC1 under steady-state operation and 
FC2 under dynamic operating conditions.  

The tests were carried out on a test stand developed 
by the Fuel Cell Laboratory (FR CNRS 3539). The test 
bench is suitable for PEMFCs up to 1 kW. The test system 
consists of the fuel cell system, the control system, the 
electronic load and the LabView interface, where the fuel 
cell system consists of the fuel cell stack and the auxiliary 
system. The collected aging parameters are shown in 
Table 1. The output voltage of PEMFC is used as an 
indicator of stack degradation in this paper. 

Table 1 Ageing parameters gathered during experiments 

Parameter Physical meaning 

Time Time Ageing time (h) 

U1 to U5 ; Utot Single cells and stack voltage (V) 
I ; J Current (A) and current density 

(A/cm2) 
TinH2 ; ToutH2 Inlet and Outlet temperatures of 

H2 (℃) 
TinAIR ; ToutAIR Inlet and Outlet temperatures of 

Air (℃) 
TinWAT ; ToutWAT Inlet and Outlet temp. of cooling 

Water (℃) 
PinH2 ; PoutH2 Inlet and Outlet Pressure of H2 

(mbara) 
PinAIR ; PoutAIR Inlet and Outlet Pressure of Air 

(mbara) 
DinH2 ; DoutH2 Inlet and Outlet flow rate of H2 

(l/mn) 
DinAIR ; DoutAIR Inlet and Outlet flow rate of Air 

(l/mn) 
DWAT Flow rate of cooling water (l/mn) 
HrAIRFC Inlet Hygrometry (Air) - estimated 

(%) 

2.3 Network framework 

In this section, LSTM, Bi-LSTM and ESN network will 
be introduced respectively. For space constraints, the 
details of GRU and Bi-GRU architecture can be seen in Ref. 
[13]. 

2.3.1 LSTM 

As a special Recurrent Neural Network (RNN), LSTM 
has the ability of long-term memory [15]. A LSTM unit is 
shown in Fig 2. 𝑋𝑡 is the input of the current step. ℎ𝑡 
denotes the output of the current step. 𝐶𝑡  is the cell 
state of the current step, which is key to long-term 
memory. 𝑋𝑡−1, ℎ𝑡−1 and 𝐶𝑡−1 stand the input, output 
and the cell state of the pervious step, respectively. The 
mathematical mechanism of the three gates of LSTM can 
be expressed as: 

 𝑓𝑡 = 𝜎(𝑊𝑓[𝑋𝑡 , ℎ𝑡−1] + 𝑏𝑓) (1) 

 𝑖𝑡 = 𝜎(𝑊𝑖[𝑋𝑡 , ℎ𝑡−1] + 𝑏𝑖) (2) 

 𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐[𝑋𝑡 , ℎ𝑡−1] + 𝑏𝑐) (3) 

 𝐶𝑡 = 𝑓𝑡 ⊗𝐶𝑡−1 + 𝑖𝑡 ⊗ 𝐶̃𝑡 (5) 

 𝑜𝑡 = 𝜎(𝑊𝑜[𝑋𝑡 , ℎ𝑡−1] + 𝑏𝑜) (6) 

 ℎ𝑡 = 𝑜𝑡 ⊗ 𝑡𝑎𝑛ℎ(𝐶𝑡) (7) 

where 𝑊𝑥 ( 𝑥 = 𝑖, 𝑓, 𝑐, 𝑜 ) are weight matrix, 𝑏𝑥 ( 𝑥 =
𝑖, 𝑓, 𝑐, 𝑜) are deviation vector. 𝑓𝑡, 𝑖𝑡, 𝑜𝑡 represent forget 

gate, input gate and output gate, respectively. 
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Fig 2 LSTM architecture flowchart 

2.3.2 Bi-LSTM 

The propagation of the Bi-LSTM is to divide the 
neurons into two directions, one for forward and 
another for backward direction [11]. This bidirectional 
propagation mechanism correlates states on both sides 
of time series information simultaneously, thus 
improving the long-term dependence of learning and 
increasing the accuracy of the model. As shown in Fig 3, 
the forward hidden state ℎ and backward hidden state 
ℎ′ are concatenated to get the final output. 

 

Fig 3 Bi-LSTM architecture flowchart 

2.3.3 ESN 

As shown in Fig 4, the ESN replaces the hidden 
layer of the RNN with a large dynamic reservoir that 
can be excited by suitable inputs [16]. Interestingly, 
the input weight matrix 𝑊𝑖𝑛  and recurrent weight 
matrix 𝑊𝑟𝑒𝑠  of the network are initialized (do not 
change). Therefore, only the output weight matrix 
𝑊𝑜𝑢𝑡  needs to be optimized by linear regression 
methods, which greatly improves the computational 
efficiency of the ESN. At the same time, it avoids the 
occurrence of local optimization in optimization 
algorithms such as gradient descent, that is, over-
fitting. 

 

Fig 4 ESN architecture flowchart 

2.3.4 Prognostic implementation based on the fusion 
approach 

In this paper, a two-layer Bi-LSTM-GRU model is 
constructed as a hidden feature extraction tool, with 
hyperparameters determined based on particle swarm 
optimization (PSO) algorithm. While the role of the ESN 
model is to establish a mapping between hidden features 
and predicted values, which the values of key parameters 
is taken according to Ref [16]. 

The works of this paper are executed on an Intel 
Core processor i5-10400CPU 2.9GHz and NVIDIA 
GeForce GTX 1660s GPU with 6GB memory. The Bi-LSTM-
GRU is based on Pytorch, while ESN framework is 
conducted based on NumPy. 

2.4 Results and Discussion 

In this section, the Bi-LSTM-GRU and ESN fusion 
prognostic framework are validated by IEEE challenge 
data. The prediction performance of this framework in 
short-term prediction and RUL estimation is discussed 
respectively, which are compared with the traditional 
SVR, LSTM, GRU. 

2.1.1 Evaluation index of prediction accuracy 

In this paper, for short-term prediction, three 
statistical criteria standards of RMSE, MAE and R2 are 
selected to evaluate the performance of the prediction. 
The smaller RMSE and MAE are, the higher accuracy of 
the model. The larger value of R2 indicates the better 
prediction accuracy. When the prediction result is 
completely consistent with the real label, the calculation 
formula of R2 = 1. The formulas for calculating these 
standards are as follows: 

 RMSE = √1

𝑁
∑ (𝑌(𝑡) − 𝑌̂(𝑡))𝑁
1

2
 (8) 

 
MAE =

1

𝑁
∑ |𝑌(𝑡) − 𝑌̂(𝑡)|𝑁
1  (9) 

 
𝑅2 = 1 −

∑ (𝑌(𝑡)−𝑌̂(𝑡))
2𝑁

1

∑ (𝑌(𝑡)−𝑌̄(𝑡))
2𝑁

1

 (10) 

where 𝑌(𝑡) is the actual measured voltage, 𝑌̂(𝑡) is 
the predicted voltage value, 𝑌̄(𝑡)  indicates the mean 
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value of the measured voltage, and 𝑁 is the number of 
measured voltages. 

As for RUL estimation, the 𝐸𝑟  between the actual 
RUL (𝑅𝑈𝐿𝐴𝑐𝑡) and the predicted RUL (𝑅𝑈𝐿𝑃𝑟𝑑𝑡) is usually 
used to determine the accuracy of the RUL estimation 
[23]. 

 𝐸𝑟 =
|𝑅𝑈𝐿𝐴𝑐𝑡−𝑅𝑈𝐿𝑃𝑟𝑑𝑡|

𝑅𝑈𝐿𝐴𝑐𝑡
 (11) 

2.1.2 Short-term prediction 

The aging data of FC1 are first used to train the Bi-
LSTM-GRU and ESN fusion prognostic framework and 
to validate the prediction results. The prediction 
results are compared with the degradation prediction 
results of SVR, LSTM and GRU models, as shown in Fig 
5. A total of 200 epochs are trained, and the fusion 
model begin to converge in the 10th epoch. The LSTM 
model has the best prediction results in the training 
phase, but performs poorly in the validation phase 
with RMSE, MAE and R2 of 0.0408, 0.0331, 0.9665 
respectively, which we consider may be due to 
overfitting. On the other hand, the GRU model shows 
more accurate predictions in the validation phase, 
although it fluctuated more in the training phase. We 
speculate that this may be due to the fact that GRU has 
fewer internal covariates and removes the cell state 
𝐶𝑡 , thus capturing the long-term decay trend better 
than LSTM. The SVR has the largest RMSE, MAE of 
0.989, 0.1063, and R2 is 0.7946. In comparison, the 
fusion method has the lowest RMSE and MAE in the 
verification stage, which are 0.0235 and 0.0195 and 
the R2 is highest at 0.9822. It should be noted that it is 
a prediction that we only use the voltage of the first 
200 hours. 

 

Fig 5 Short-term degradation prediction results of the four 
methods with 200h data training (FC1) 

To further verify the universality of the fusion 
model, the degradation voltage data of FC2 under 
dynamic operation is used for verification. The prediction 
results of the Bi-LSTM-GRU and ESN fusion model is 
shown in Fig 6. It can be seen that the results of the 
fusion method can fit the measured data well with 200h 
training data. The RMSE, MAE and R2 of fusion model are 
0.0197, 0.0155, 0.9818, respectively, which seems to 
show a better result than FC1. The results can be 
explained by the obvious degradation trend of the 
variable load data in the early stage, where the fusion 
model can accurately extract these unexplainable 
characteristics. 

 

Fig 6 Short-term degradation prediction results of the four 
methods with 200h data training (FC2) 

2.2.3 RUL estimation 

In this part, we will present RUL estimation of fusion 
model with FC1. When the total voltage of the stack 
drops to 96.5% of the initial voltage, PEMFC is defined as 
failure [12]. Therefore, for FC1, When T=809h, the total 
voltage of the stack (𝑈𝑡𝑜𝑡) is 3.203V, which is defined as 
the end of life (EOL) of the stack. 

The prediction results are given in Fig 7. Although 
there are large forecast fluctuations, the fusion model 
can track long-term nonlinear trend in voltage. In 
generally, it is not possible to achieve high accuracy for 
tracking the short-term trend change of the voltage, but 
a relatively accurate RUL estimation can also be 
performed. With 200h data for training, the RUL 
predicted by the fusion model occurs at 616.43h, when 
the predicted voltage is 3.198V, which is below the 
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threshold. It only differs from the true RUL value of 609h 
by approximately 7h, with the 𝐸𝑟  of 1.22%. In summary, 
we seem to demonstrate that the proposed 
comprehensive prognostic framework has excellent 
short-term prediction and RUL estimation capabilities, 
with only 200 h of data for training. 

. 

Fig 7 RUL estimation of fusion prognostic method 

3. CONCLUSIONS 
A fusion prognostic framework has been proposed in 

this paper in order to predict the voltage degradation of 
PEMFC stack. The framework prediction results are 
validated with two different PEMFC stack. Meanwhile, 
Different machine learning methods are compared with 
the proposed Bi-LSTM-GRU and ESN framework. The 
conclusions can be made as follows:  
1. The proposed framework can achieve short-term 
prediction with only the first 200h data for training, 
which short-term trends in stack decay can be tracked 
accurately. The RMSE, MAE, R2 are 0.0235, 0.0195, 0.9822, 
respectively. 
2. RUL estimation is implemented with proposed fusion 
framework, which only 200h data for training. The 
framework can capture long-term change of voltage 
degradation accurately, with 𝐸𝑟  is 1.22%. 

The framework can be used to PEMFC lifespan, 
which also help for online monitor of healthy. In the 
future, more practical conditions should be considered, 
such as fuel cell operational status monitoring in vehicle 
applications. 
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