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ABSTRACT 
With the ability of vertical take-off and landing, the 

task path of an air-ground vehicle will be significantly 
shortened. Accordingly, the energy consumption will be 
greatly reduced. Through reasonable planning of the 
path, such vehicle can meet the high-efficiency needs of 
unmanned tasks and alleviate the global energy shortage 
problem. To design an optimal feasible path, this paper 
proposes a smooth path planning learning strategy 
considering mode switching. A new reward function of 
the Q-learning algorithm is presented, considering the 
influence of flight obstacle crossing parameters. To avoid 
the redundant flight distance and energy consumption 
caused by frequent high flights, the flight height 
correction is made in the update rule. Besides that, a 
path smoothing modification, called double yaw 
correction, reduces turning points and improves the path 
smoothness. It further reduces the energy consumption 
caused by the tortuous path. This modification also 
points out the direction of iterative learning and 
accelerates the algorithm convergence speed. Finally, 
the proposed strategy is verified on a 40m*40m map 
with 0-10m obstacle height. Results show that, the 
proposed strategy is effective to shorten 4.08m distance 
and plays the role of smoothing the path. Its convergence 
speed is faster than the traditional algorithm. 
Keywords: air-ground vehicle, path planning, mode 
switching, path smoothness, Q reinforcement learning  

1. INTRODUCTION 
The air-ground vehicle is an effective function 

combination of the traditional wheeled vehicle and 
multi-rotor aircraft [1]. This novel vehicle has two basic 
modes, ground mode and flight mode, respectively. With 
the combination of the above two modes, such vehicle 

need not rely on a fixed two-dimensional ground route, 
smoothly crossing obstacles, passing ravines and water 
surfaces, etc. The task path is significantly shortened and 
the corresponding energy consumption is greatly 
reduced. Reasonable path planning for the vehicle can 
improve the efficiency of task completion and alleviate 
the global energy shortage problem.  

Commonly, path planning can be divided into global 
path planning and local path planning, respectively. 
Reinforcement learning is a general framework for 
adaptive decision making in unknown and complex 
environments with the ability of autonomous interactive 
learning [2]. It has been applied in many vehicle fields [3]. 
An efficient Q-learning algorithm defines new states and 
actions spaces, obtaining a high-quality path in terms of 
length, computation time, and robot safety [4]. In 
addition to the path length, computation time, etc., path 
smoothness is also an optimization part of the path 
planning algorithm that can effectively reduce the 
energy consumption of vehicles [5]. An enhanced deep 
reinforcement learning uses the artificial potential field 
algorithm to improve the action space and reward 
function of the deep Q-learning network algorithm, and 
finally obtains a smooth and optimal path [6]. 

Most of the existing path planning algorithms are 
about mobile robots with a single movement mode. 
There are few studies on multi-mode path planning [7, 
8]. This planning is more complicated and requires in-
depth research. 

Aiming at this research requirement, a smooth path 
planning learning strategy considering mode switching is 
presented in this paper. A new reward function and 
update rule of the Q-learning algorithm, considering the 
influence of flight obstacle crossing parameters and 
modification of flight height, is presented to ensure the 
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path shortening with reasonable mode switching. The 
corresponding driving energy consumption is reduced. 
For complex environments with dense obstacles, the 
double yaw correction of the update rule is applied to 
guiding the path to approximate the ideal path, i.e., the 
connection between the starting point and the end point 
in an obstacle-free environment. It can reduce turning 
points, improve the path smoothness, and further 
reduce the energy consumption. This modification also 
points out the direction of iterative learning and 
accelerates the algorithm convergence speed. 

The rest of this paper is organized as follows. Section 
2 introduces the physical model of the designed vehicle. 
In Section 3, the procedure of the strategy is presented. 
Section 4 offers the verification and comparison. Section 
5 draws the conclusion and presents future work. 

2. AIR-GROUND VEHICLE DESCRIPTION 
In this section, the physical model of the designed 

air-ground vehicle is firstly introduced. And the power 
system is displayed. 

The air-ground vehicle refers to the mobile platform 
that can both travel on the ground and fly in the air, as 
shown in Fig. 1. It has two modes, ground mode and 
flight mode, respectively. Fig. 1(a) shows the flight mode. 
Fig. 1(b) is the ground mode. Ground driving is the main 
drive mode, and proper flight mode switching can help 
the vehicle pass obstacles quickly and reduce the detour 
distance. Such vehicle consists of flight control system, 
chassis system, and power system. 

 
(a) Flight mode 

 

 
(b) Ground mode 

Fig. 1. Air-ground vehicle model 

Among these, the flight control system consists of 
eight-rotor twin propellers, each with an independent 
drive motor. And the chassis system adopts a distributed 

four-wheel independent drive system. The rotor motors 
and in-wheel motors share a common power system for 
energy supply. The configuration is shown in Fig. 2. The 
hybrid power scheme is helpful to achieve the energy 
saving and emission reduction [9, 10]. 

 
Fig. 2. Power system configuration 

3. Q REINFORCEMENT LEARNING-BASED PATH 
PLANNING STRATEGY 

In this section, a smooth path planning learning 
strategy considering mode switching is designed. It is 
important to note that the calculation of the total path 
distance consists of two parts: the distance of the 
vehicle's forward track and the height of the flight over 
the obstacle. 

3.1 Reward function setting  

The reward function for the traditional wheeled 
vehicle is no longer applicable to the air-ground vehicle. 
The new reward function is set up to take full advantages 
of multi-mode movements. Obstacles within the flyable 
height of the vehicle can be overturned by switching the 
flight mode. So, such reward function can effectively 
reduce the forward track distance. The specific definition 
is expressed as 
𝑅 = 𝑎 𝐷𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝑝𝑢𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡 ⁄                 (1) 
with 

𝑝𝑢𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡 = {
0, 𝑠𝑎𝑓𝑒(𝐻𝑓𝑙𝑖𝑔ℎ𝑡 ≤ 𝐻𝑚𝑎𝑥)

𝑖𝑛𝑓, 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒
      (2) 

where 𝑎  is the scaling coefficient, 𝐷𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  is the 
forward track distance, 𝑝𝑢𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡  is the obstacle 
penalty value, 𝐻𝑓𝑙𝑖𝑔ℎ𝑡  is the flight height of the 

vehicle, 𝐻𝑚𝑎𝑥 is the max flight height. 

3.2 Update rule setting 

In conjunction with the new reward function 
described above, the improved update rule integrating 
multiple modification factors is expressed as 

𝑄(𝑆𝑡, 𝐴𝑡) ← (1 − 𝛼)𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼[𝑏 ∗ 𝑅𝑓𝑙𝑖𝑔ℎ𝑡 

−𝑐 ∗ 𝑅𝐷𝑜𝑢𝑏𝑙𝑒𝑦𝑎𝑤 + 𝛾𝑚𝑎𝑥𝐴𝑡+1
𝑄(𝑆𝑡+1, 𝐴𝑡+1)]       (3) 
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with 
𝑅𝑓𝑙𝑖𝑔ℎ𝑡 = ℎ𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ∗ 𝑅                          (4) 

𝑅𝐷𝑜𝑢𝑏𝑙𝑒𝑦𝑎𝑤 = 𝐷𝑜𝑢𝑏𝑙𝑒𝑦𝑎𝑤 ∗ 𝑅                  (5) 

where 𝑅𝑓𝑙𝑖𝑔ℎ𝑡  and 𝑅𝐷𝑜𝑢𝑏𝑙𝑒𝑦𝑎𝑤  are the modified 

reward functions for flight height and path inflection 
points, respectively. ℎ𝑐𝑜𝑟𝑟𝑒𝑐𝑡  is the flight height 
correction, 𝐷𝑜𝑢𝑏𝑙𝑒𝑦𝑎𝑤  is the double yaw correction, 
𝑏 and 𝑐 are the scaling coefficients of the modifications. 

The role of ℎ𝑐𝑜𝑟𝑟𝑒𝑐𝑡  is to limit the frequent high 
flights of the vehicle. With the previous setting of the 
new reward function, the algorithm tends to search for 
shorter forward track distance, while ignoring the 
increase in the total path distance caused by the flight 
height. These frequent flights will also cause high flight 
energy consumption. ℎ𝑐𝑜𝑟𝑟𝑒𝑐𝑡 can be calculated as 

ℎ𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 1 (1 + 𝐻𝑓𝑙𝑖𝑔ℎ𝑡) ⁄                      (6) 

In addition, in the search process of the algorithm, 
with the increase in the density of obstacles, there will 
be more turning points. 𝐷𝑜𝑢𝑏𝑙𝑒𝑦𝑎𝑤 is used to guide the 
path to approximate the ideal path, reduce turning 
points, and improve the path smoothness. The 
smoothing of the path will effectively reduce the energy 
consumption of the vehicle. 𝐷𝑜𝑢𝑏𝑙𝑒𝑦𝑎𝑤  can be 
calculated as 
𝐷𝑜𝑢𝑏𝑙𝑒𝑦𝑎𝑤 = 𝑑 ∗ 𝑦𝑎𝑤1 + 𝑒 ∗ 𝑦𝑎𝑤2              (7) 
with 

𝑖𝑑𝑒𝑎𝑙 = 𝑒𝑛𝑑 − 𝑠𝑡𝑎𝑟𝑡⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑                           (8) 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡1 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑠𝑡𝑎𝑟𝑡⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑                       (9) 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡2 = 𝑒𝑛𝑑 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑                    (10) 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡3 = 𝑛𝑒𝑥𝑡 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑                   (11) 

𝑦𝑎𝑤1 = acos (
𝑐𝑢𝑟𝑟𝑒𝑛𝑡1∙𝑖𝑑𝑒𝑎𝑙

‖𝑐𝑢𝑟𝑟𝑒𝑛𝑡1‖∙‖𝑖𝑑𝑒𝑎𝑙‖
)                 (12) 

𝑦𝑎𝑤2 = acos (
𝑐𝑢𝑟𝑟𝑒𝑛𝑡2∙𝑐𝑢𝑟𝑟𝑒𝑛𝑡3

‖𝑐𝑢𝑟𝑟𝑒𝑛𝑡2‖∙‖𝑐𝑢𝑟𝑟𝑒𝑛𝑡3‖
)              (13) 

where 𝑦𝑎𝑤1 is the first yaw correction, which is used to 
correct the deviation of the current position from the 
ideal path. 𝑦𝑎𝑤2 is the second yaw correction, which is 
used to correct the steering angle of the vehicle for each 
action decision. 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡, and 𝑛𝑒𝑥𝑡 are the 
state descriptions of the vehicle. 𝑑  and 𝑒  are the 
respective scaling coefficients. 

Besides smoothing the path, the double yaw 
correction effectively reduces the iterative learning that 
obviously deviates from the ideal path, and significantly 
improves the algorithm convergence speed. 

4. RESULTS AND DISCUSSION 
In this section, the verification of a 40m*40m path 

planning map is carried out. The height of road obstacles 
is between 0 and 10m. The number of iterations is 400. 

The traditional reinforcement learning algorithm, 
reinforcement learning algorithm considering mode 
switching, and smooth path planning learning strategy 
considering mode switching are adopted for path 
planning. The results are shown in Fig. 3. Fig. 3(a) shows 
the three-dimensional obstacle diagram. Fig. 3(b) shows 
the three-dimensional top view. The blue area is a pre-
defined no-fly zone, which is not involved in planning 
decisions due to local regulations prohibiting access. 

 
(a) Three-dimensional obstacle diagram 

 

 
(b) Top view 

Fig. 3. Path search results 

As can be seen from the figure, the reinforcement 
learning algorithm considering mode switching reduces 
the polyline distance generated by obstacle avoidance 
compared to the traditional algorithm. But this algorithm 
also has many turning points. And at position B in the 
figure, the redundant turning causes a local path 
deviation, increasing the extra path distance and energy 
consumption. After the smooth path planning strategy, 
i.e., the double yaw correction is added, the path is 
guided to approach the ideal curve. Compared with the 
other two algorithms, this final path is effectively 
smoothed and more consistent with the actual operation 
of the vehicle. 

The path distance comparison is shown in Fig. 4. 
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Fig. 4. Comparison of path distance 

The reinforcement learning algorithm considering 
mode switching obtains a shorter planning path than the 
traditional algorithm and reduces 2.42m. The 
introduction of the double yaw correction smooths the 
path and obtains the shortest total distance, which is 
1.66m less than that of the algorithm only considering 
mode switching. In addition, the smooth path planning 
learning strategy considering mode switching effectively 
reduces the iterative learning that deviates excessively 
from the ideal path. It points out the exploration 
direction of environmental states and accelerates the 
algorithm convergence speed. 

5. CONCLUSION 
A smooth path planning learning strategy design for 

the air-ground vehicle considering mode switching is 
proposed in this paper. The reasonable path planning for 
the vehicle effectively reduces the path distance and 
corresponding energy consumption to complete various 
unmanned tasks. In this strategy, a new reward function 
and update rule of the Q-learning algorithm, considering 
the influence of flight obstacle crossing parameters and 
modification of flight height, is presented to ensure the 
path shortening with reasonable mode switching. 
Furthermore, for complex environments with dense 
obstacles, the double yaw correction of the update rule 
is applied to guiding the path to approximate the ideal 
path, which has a significant impact on the efficiency of 
iterative learning. Results show that the reinforcement 
learning algorithm considering mode switching reduces 
2.42m distance compared with the traditional algorithm. 
And after adding the double yaw correction, the smooth 
path planning learning strategy considering mode 
switching further reduces 1.66m. Besides that, the 
proposed strategy reduces turning points, and has the 
smoother path and superior convergence speed. In the 
future, the proposed strategy will be verified accordingly 
in the test platform. 
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