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ABSTRACT
Accurate prediction of the heat-side load of a central
heating system is of great importance to meet the
thermal comfort of users, while saving energy and
reducing emissions. Most of the current research
reports on load models rarely consider the difference
and time-varying of actual user demand room
temperature. In this paper, user room temperature is
introduced into the heat load model, and a hybrid
mechanistic and data-driven approach is used to
construct a heat load model for a building complex,
including base load, cumulative temperature effects
and determination of model parameters, which is
applied to two practical engineering cases. The results
show that: the relative deviations of the simulated
values compared with the actual are all no more than
3% for annual cumulative loads, and no more than 25%,
20%, and 18% for daily, three-days, and weekly loads,
respectively. The heat load model in this paper can
reflect the demand loads of a building complex at
different target room temperatures. By setting the
target room temperature values with reference to the
design specifications, it is found that both cases have
great energy-saving potential, with the annual
cumulative load being reduced by 32.2% for case 1 and
62.7% for case 2.

Keywords: building complex; load forecasting model;
target room temperature; time-zoning; energy-saving
potential

1. INTRODUCTION
With the emergence of network control and

management platforms for centralized heating systems,

it has become possible to obtain environmental
parameters of end-users and equipment operation
information, which also extends the horizon of heat
load prediction studies for centralized heating systems
[1]. Guiding the operation and regulation of the heating
system based on heat load prediction can significantly
improve the heating effect. For example, a heat supply
enterprise in Dalian, Liaoning Province, applied a heat
load prediction model to guide the operation
regulation, and the complaints of heat users decreased
after 20 days of the experiment [2]. The comparison
between two similar heat exchange stations of a
heating company in Changyuan County, Henan
Province, showed that the heat exchange station with
the heat load prediction control method saved 15.01%
of heat than the one with the second network supply
temperature control method [3]. The average energy
saving rate during a 5-day test period was 8.2% at a
peaking furnace heat station in Ranghu, Daqing, by
applying a heat load prediction model to guide
operational regulation [4]. Therefore, the study of heat
load prediction of heating systems is of great
significance to realize intelligent heating.

However, most of the current studies, which do not
consider the variation of indoor temperature, usually
use the common room temperature of the building for
heat load prediction and the heat load of a building
complex was predicted for the purpose of operation
stability. For example, for heat exchange stations,
methods such as BP neural networks [5], wavelet neural
networks [6], Elman neural networks [7], and extreme
learning machines [8] are commonly used for
short-term heat load prediction, and regression
methods [9-10] are used for long-term heat load
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prediction. Heat sources and district heat exchange
stations are mainly focused on the centralized effect,
and do not take advantage of the technical advantages
brought by the newly emerged network control
platform for centralized heating systems, thus are not
applicable for heat load prediction based on end-user
demand.

Assessing the actual energy consumption of
buildings is a key issue to guide future energy efficiency
efforts or operational regulation of a building complex.
Several universities and research institutes have
developed a large number of commercial building
energy simulation-specific software, such as DOE2.2,
EnergyPlus, eQuest, DEST, Blast, and Transys, for
commercial transient simulations for energy
consumption prediction and energy-saving potential
assessment [11-13]. Mao et al. used eQuest to simulate
the energy consumption of an office building, and the
relative deviation of the simulated annual heating
energy consumption from the actual use was -21.1%
[14]. Reinhart et al. analyzed the results of building
energy simulations for typical buildings in several urban
areas, with relative errors of 5%-20% in the annual heat
load [15]. For the assessment of energy-saving
potential, the following scholars analyzed the
energy-saving potential at the envelope level. Lei et al.
used EnergyPlus simulation software to analyze the
impact of envelope on building energy consumption for
a residential building [16]. Chen et al. used Design
Builder to quantify the energy-saving potential of the
early buildings of Hunan University, and the
energy-saving potential of the envelope retrofit was as
high as 50% [17]. Fang et al. considered solar radiation
and wind speed factors to replace the outdoor air
temperature by the integrated ambient air temperature
for heating system operation regulation, which can
reduce the heat supply of the system to achieve the
energy-saving potential with 8.8% to 11.5% for solar
resource class I and class II areas [18].

However, most of the current research reports on
heat load models rarely consider the variability and
timeliness of actual user room temperature demand.In
this paper, user room temperature is introduced into
the novel heat load model, and a hybrid mechanistic
and data-driven approach is used to construct a
dynamic building complex heat load model. The novel
model can characterize the physical characteristics and
actual energy use behavior of buildings and reflect the
the demand heat load of a building complex at different
target temperatures in a timely and accurate manner. It

also analyzes the energy-saving potential from the
demand room temperature of demand-side users and
provides O&M guidance for energy-saving on the
demand side.

2. MODEL AND METHODOLOGY
Sample data are cleaned and processed and the

novel heat load model is constructed based on a hybrid
mechanistic and data-driven approach considering
factors of room temperature variation and the
cumulative effect of air temperature.

2.1 Research methodology of this paper

To solve the problem of mismatch between the
heat supplied by a building complex and the demand
heat load of users, we consider the target demand
room temperature of building complex users to match
the demand side load, and further introduce the user
room temperature into the novel heat load model,
based on a hybrid modeling of mechanism and data
hybrid-driven approach. The model is also applied to
two different building complexes used as case studies to
simulate the daily load and deviation analysis of the
cases during the heating season. The energy-saving
potential analysis of these cases based on the heat load
model is carried out to guide the operation regulation
of the heating system. Figure 1 shows the framework of
this method.

Fig.1 Methodological framework of this study

2.2 Data cleaning and processing

Before modeling, the sample data need to be
cleaned and processed to determine the sample of
model input parameters. Case 1 and case 2 are used to
introduce the method of sample screening. Both are
college buildings with almost the same user types, but
their heating areas are different. The sample numbers
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are shown in Tables 1 and 2. Specific steps include: 1)
obtain data parameters, including heat load,
representative monitoring point room temperature,
and meteorological temperature; 2) obtain daily load,
indoor daily average temperature, and outdoor daily
average temperature (high and low average
temperature) by data preprocessing; and 3) obtain
parameters at the same time points by data cleaning,
where incomplete data are ignored [20].
Table 1. Sample size (2019-2020 heating season, 200,000m2

heating area) in case 1 study

Daily load
Average daily

indoor
temperature

Average daily
outdoor

temperature
Sample
collection 97 89 114

Same time
samples 72

Results of
sample
screening

50

Table 2. Sample size (2020-2021 heating season, 240,000m2

heating area) in case 2 study

Daily load
Average daily

indoor
temperature

Average daily
outdoor

temperature
Sample
collection 134 138 138

Same time
samples 134

Results of
sample
screening

121

2.3 A mechanism and data-driven hybrid-drive model

A hybrid mechanistic and data-driven approach is
used to establish the novel heat load model. The base
load model is established according to the equation for
calculating the steady-state load of a building,
provided by the Heating Engineering [20], as shown
below,

)( wn ttKFQ  (1)
where Q is the heat load of the building, K is the heat
transfer coefficient of the building, F is the heat transfer
area of the building, tn and tw are the indoor and
outdoor air temperatures, respectively.

According to the equation for the temperature
distribution inside the wall during cooling of an infinitely
large flat wall under the third type of boundary
conditions[21], there is a certain decay delay during the

conduction of the temperature wave considering the
unsteady thermal conductivity of the wall. Fang et al
[19] showed that the current heat load of a building is
not only related to the current outdoor temperature
but also related to the previous outdoor temperature.
Zhao et al [22] analyzed the mechanism analysis of
meteorological factors affecting the heat load and
obtained that the cumulative effect of temperature has
a significant effect on the heat load variation.

In this paper, the cumulative effect of temperature
and indoor temperature change are considered
together to avoid the shortage of single meteorological
factor analysis. Then the particle swarm algorithm is
used to solve the correction coefficient of the
cumulative effect of temperature.

The idea of correction for the cumulative
temperature effect is to correct the temperature of the
day to be predicted using the weighted temperature of
the previous days, calculated as [23],
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where i is the ith day before the day to be predicted, tx
is the temperature correction value, tw is the average
temperature on the prediction day, ti is the real
temperature i days ago, p = min (n, 3), where n is the
number of days that the average temperature is
continuously below a certain temperature, and m is the
cumulative effect coefficient.

The cumulative temperature cumulative effect
coefficient mi is solved by using the particle swarm
algorithm. The optimization process for the particle
swarm algorithm is as follows: the initial population is
generated randomly; the particle velocity and position
are updated by tracking the individual optimal value
pbest and the global optimal value gbest; and the global
optimal value is obtained iteratively until convergence.
The particle velocity and position are calculated as [16],
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where vk+1 and vk are the particle velocities at the
(k+1)th and kth iterations, respectively; xk+1 and xk are
the particle positions at the (k+1)th and kth iterations;
w is the inertia weight; c1 and c2 are the learning
factors; and r1 and r2 are random numbers between 0
and 1.

For the parameters of the heat load model, we first
determine the model input parameters following the
sample data cleaning and processing step. then the
function f1 (tn, tw) with respect to the load and
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temperature difference is fitted by a least squares
curve, and the deformed formula (2) are substituted
into the f1 function denoted as f1 (tn, mi). Finally the
particle swarm algorithm is used to identify the
correction factor for the cumulative effect of
temperature to solve for the temperature cumulative
effect correction coefficient and to further obtain the
heat load model with the highest degree of fit between
the sample daily load and the corrected indoor and
outdoor temperature difference. Figure 2 shows the
block diagram of the heat load model.

Fig.2 Block diagram of heat load modeling

3. CASE APPLICATIONS

3.1 Simulation results based on the novel heat load
model for building complexes

According to the novel heat load model, two
different cases for the building complexes are
considered. Case 1 (the heating area is 200,000m2 for
the 2019-2020 heating season) and case 2 (the heating
area is 240,000m2 for the 2020-2021 heating season)
are university building complexes with the same user
type and different heating areas. User types of two
cases are shown in Figure 3, including experimental
workshops, internship bases, dormitories, research
offices, and canteens.

Fig.3 Schematic diagram of building complex user types
Figure 4 shows the actual daily loads and simulated

loads for case 1 and case 2. The model room
temperature characteristics for the actual operational
simulation can be obtained from the calculated mean
values of the representative room temperatures
selected to characterize the building complex. Case1
model room temperature characteristic values (20.5°C
for semester and 15.7°C for winter vacation) and case 2
model room temperature characteristic values (24.0°C
for semester and 22.5°C for winter vacation) are
substituted into the calibrated heat load models for
different case samples to simulate the actual daily load.

(a) Case 1

(b) Case 2
Fig.4 Actual daily load and simulated load for the two
simulated cases (case1: 2019-2020 heating season,

200,000m2 heating area, case2: 2020-2021 heating season,
240,000m2 heating area )
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Comparing the annual cumulative load simulated
by the model with the actual, there is a relative
deviation of 2.3% between the simulated and actual
values for case 1 and 0.01% for case 2. Reinhart et al.
analyzed the results of building energy consumption
simulations for a number of typical urban building
areas, and the relative deviation of the annual heat load
is 5%-20%[15]. Mao et al. simulated the annual heating
energy consumption of an office building with a relative
deviation of -21.1% from the actual[14]. The results
show that this new daily load model for building
complexes simulates annual cumulative loads well.

The ratio of simulated load to the actual load for
different time scales ( daily, three days, and one week)
is shown in Fig. 5 and Fig. 6. The red dashed lines in the
figures refer to the samples with relative deviations of
no more than 15%. In both cases, the samples with
relative deviation of no more than 15% for different
time scales account for more than 75%, and the
samples with relative deviation of no more than 15% for
weekly cumulative load account for more than 89%. The
relative deviation of the annual cumulative load in both
cases is less than 3%.

Table 3 shows the range of the ratio of simulated
load to actual load for 90% of the samples in the two
cases. It can be seen that the relative error between the
simulated and actual values is less than 20% for 90% of
the samples with time scales of three days and one
week in case 1 and case 2, which meets the engineering
requirements. The error level is within the maximum
error range specified in the ASHRAE Guideline 12-2002
for the energy consumption results of a single building,
therefore the energy consumption of the building
complex is acceptable. In addition, the larger the time
scale is, the smaller the ratio range of 90% of the
samples is, and the more accurate the simulation results
are.

The results show that the larger the time scale, the
less the load simulation results will be affected by the
cumulative effects of building, system inertia and
temperature, thus, the more accurate the simulation
results will be. It can be used for load forecasting for the
next three days, one week, one month, etc. The start
and stop of heat source units and the adjustment of the
operation mode of the heating system can be
considered three days, one week or one month in
advance, so that reasonable and effective heat network
index prediction and heat network regulation can be
made in advance, and the annual cumulative load

prediction can assess the energy-saving space for the
next year for operation and maintenance guidance.

Table 3. Ratio of simulated load to actual load (90% of
samples, case1: 2019-2020 heating season, 200,000m2

heating area, case2: 2020-2021 heating season, 240,000m2

heating area )
Daily Three days Week

Case 1 0.79-1.21 0.87-1.15 0.908-1.12
Case 2 0.766-1.22 0.80-1.17 0.823-1.123

(a) Daily

(b) Three days

(c) Week
Fig.5 Ratio of simulated load to actual load under different

time scales (daily, three days, one week) for case 1
(2019-2020 heating season, 200,000m2 heating area)
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(a) Daily

(b) Three days

(c)Week
Fig.6 Ratio of simulated load to actual load under different

time scales (daily, three days, one week) for case 2
(2020-2021 heating season, 240,000m2 heating area)

3.2 Analysis of energy saving potential

Readers are referred to the design specification on
how to set the room temperature target value, use the
model described above to calculate the demand daily
load, carry out energy-saving potential analysis and
guide the heating operation regulation related to case 1
and case 2 studies.

According to the actual operation simulation, the
case 1 model room temperature characteristic value is
20.5°C in the semester and 15.7°C in the winter
vacation, and the case 2 model room temperature

characteristic value is 24.0°C in the semester and 22.5°C
in the winter vacation. The daily load of case 1 and case
2 were calculated using the room temperature
characteristic value of 18°C in the semester and 13°C in
the winter vacation as example ① and 13°C in the
semester and 7°C in the winter vacation as example②.
Shown in Figure 7 are the daily load curves
corresponding to the actual daily load simulated values
and the set values, for case 1 and case 2 building
complexes, respectively.

Figure 8 shows the ratio of the simulated total
cumulative load to the actual cumulative load in
different examples for cases 1 and case 2. In case 1, the
simulated cumulative load can be reduced by 11.5%
compared to the actual operating simulated load in
example ① (18°C in the semester, 13°C in the winter
vacation), and the simulated cumulative load can be
reduced by 32.2% compared to the actual operating
simulated load in example ② (13°C in the semester
and 7°C in the winter vacation). In case 2, the simulated
cumulative load can be reduced by 40.8% compared to
the actual operating simulated load in example ①
(18°C in the semester, 13°C in the winter vacation), and
the simulated cumulative load can be reduced by 62.7%
compared to the actual operating simulated load in
example② (13°C in the semester and 7°C in the winter
vacation).

(a) Case 1

(b) Case 2
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Fig.7 Actual daily load simulation and set value daily load
curve for case building complex (case1: 2019-2020 heating
season, 200,000m2 heating area, case2: 2020-2021 heating

season, 240,000m2 heating area )

(a) Case 1
(Actual operation simulation: 20.5°C in the semester and

15.7°C in the winter vacation, Example① simulation: 18°C in
the semester, 13°C in the winter vacation, Example②
simulation: 13°C in the semester and 7°C in the winter

vacation)

(b) Case 2
(Actual operation simulation: 24.0°C in the semester and

22.5°C in the winter vacation, Example① simulation: 18°C in
the semester, 13°C in the winter vacation, Example②
simulation: 13°C in the semester and 7°C in the winter

vacation)
Fig.8 Ratio of the simulated total cumulative load to the

actual cumulative load for the different examples in case 1
and case 2 (case1: 2019-2020 heating season, 200,000m2

heating area, case2: 2020-2021 heating season, 240,000m2

heating area )

4. CONCLUSIONS
In this paper, user room temperature is introduced

into the novel heat load model, and a hybrid
mechanistic and data-driven approach is used to
construct a heat load model for building complexes, and
two cases of university building complexes with the
same user types and different heating areas are used as
examples for model evaluation and analysis. The main
findings are as follows:

(1) The simulated loads in the two case models are
compared with the actual for deviations, the samples
with relative deviations of no more than 15% for
different time scales accounted for more than 75%,and
the samples with relative deviation of no more than
15% for weekly cumulative load account for more than
89%. The relative deviation of the annual cumulative
load in both cases is less than 3%.

(2) The larger the time scale, the less the load
simulation results are affected by building, system
inertia and cumulative temperature effects, thus the
more accurate the load simulation results are. It can be
used for load prediction for the next three days, one
week, one month, etc., so that reasonable and effective
heat network index prediction and heat network
regulation can be made in advance.

(3) The novel heat load model in this work takes
into account the differences in the actual demand of
the users' room temperature and the time-varying
effect to predict the demand load of a building complex
at different target temperatures, and provides guidance
for the supply demand in operation and maintenance,
which is conducive to satisfying the users' thermal
comfort and maximizing energy saving and emission
reduction at the same time.
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