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ABSTRACT
An ecological driving strategy considered battery

State-of-Health is proposed based on Deep
reinforcement learning. Not only does this strategy try
to minimize fuel consumption while maintaining the
safe car-following sate, it also seeks to lower the
battery aging speed. In order to optimize the car-
following and energy management performance,
reward functions are developed by combing driving
features of car-following, engine and battery
characteristics. The agent maximizes the accumulated
reward by interacting with the simulation environment
to explore the action space. While controlling the SHEV
to maintain a safe car-following distance, the proposed
method reduces the effective Ah-throughput by 15 -
57.6% and only increases the fuel consumption within
5% compared with the case of achieving the best fuel
economy. In addition, this method is proven to achieve
similar results in different driving cycles.

Keywords: Energy management strategy;Car-following;
Battery State-of-Health; Deep reinforcement learning

1. INTRODUCTION
Although the driver’s behavior is generally

considered to be one of the most important factors
affecting vehicle fuel consumption, the development of
energy management strategies for powertrain devices
has never stopped [1] . First, dynamic programming is
used to control the gear-shifting sequence and the

power split [2]. Paganelli et al. proposed the equivalent
consumption minimization strategy which comes down
to a single goal with electric and energy consumption
[3]. In addition to the characteristics of the vehicle
itself, traffic information is also critical to EMS. Model
Predictive Control incorporates future operating
conditions into the calculation process, and its
optimization is solved over a future prediction horizon
[4].

In order to make vehicles have higher fuel
economy, the concept of ecological driving that takes
into account more influencing factors is proposed.
These factors include driving speed, acceleration,
deceleration, route choice, idling and vehicle
accessories [5]. Adaptive cruise control technology
enables the vehicle to keep stable speed ,acceleration
and deceleration performance under complex traffic
conditions , therefore using cruise control when
possible is commonly recommended for eco-driving [6].
Dahmane et al. studied using stochastic model
predictive control (SMPC) to solve the global
optimization problem of the combination of ACC with
Stop&Go and energy management strategies [7], and
innovatively regarded the required power of the vehicle
as a random Markov process. Based on Markov
property of the power required by hybrid electric
vehicles, Hu et al. firstly applied deep reinforcement
learning to the energy management strategy of HEVs
[8]. Compared with conventional method,learning-
based methods have higher adaptability under complex
driving cycles and consumer less computational
resources [9]. Therefore, the longitudinal control task of
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the vehicle can also be completed by the deep
reinforcement learning algorithm, as shown in [10,11].

In summary, it is feasible to use deep reinforcement
learning to solve the global optimization problem combining
SHEVs energy management strategy and adaptive cruise
control. However, extreme fuel economy means shorter
battery life, and a tradeoff exists between better fuel
economy and longer battery life [12]. Therefore, in this
paper, a DRL-based ecological driving strategy
considering battery aging is proposed. The rest of paper
is organized as following: section 2 shows car following
system, SHEV system and control algorithm of eco-
driving in detail; in section 3, simulation results are
analyzed and discussed; section 4 finally concludes the
paper.

2. THE ECO-DRIVING STRATEGY INCLUDING BATTERY
DEGRADATION
A complete eco-driving strategy consists of vehicle

adaptive cruise control and energy management
strategies. In other words, the car-following system and
powertrain system are the control objects of the eco-
driving strategy. Since the focus of our research is not
on the structure of vehicle's powertrain system, we
select SHEVs as the target vehicle.

2.1 Car-following system

Figure1. Car-following system

The car-following system usually describes the
scene where the target car follows the preceding car on
a one-way road that cannot be overtaken, as shown in
Fig.1.�� , �� and �� are the speed, acceleration, and
distance traveled by the proceeding vehicle.�� ,�� and
��are the speed, acceleration and travel distance of the
target vehicle. l and L are the vehicle length and car-
following distance, and L is defined as L = xp − xt − l .
Besides, the target vehicle satisfies the following
mathematical relationship:

�� = ��� ��
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2
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where F is the driving force of the vehicle, G is the
gravity of the vehicle, f is the rolling resistance
coefficient, �� is the air resistance coefficient, A is the
windward area, δ indicates the rotation mass
conversion coefficient, m is the body mass, and α
indicates the road gradient angle whose default value is
0.

If the velocity of the target vehicle is not restricted,
collisions will still occur during the training process.
Therefore, we define the minimum car-following
distance and the maximum car-following distance on
the basis of the braking distance [13].They are
estimated as

���� = ��(�� +
��
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��
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2
(2)

where �� is the driver's reaction time, taking 0.8s, ��
is the acceleration change time, taking 0.1s, and ����
is the emergency deceleration of the target vehicle,
taking 7.5�/�2.

2.2 SHEV powertrain system

Figure2. SHEV configuration

The vehicle studied is equipped with two identical
electric propulsion systems,as shown in Fig.2.Engine-
generator set(EGS) and the battery pack are equipped
as power sources for the vehicle.Their energy
distribution should satisfy the following relationship to
provide the required power Preq:

Preq =
(����� − ����) ∙ ��������� , Preq ≥ 0
(����� − ����)/��������� , Preq < 0 (3)

where Pbatt is terminal power of the battery pack,PEGS

is output power of generator,and ηinverter presents
efficiency of inverter .Other parameters of this series
hybrid electric vehicle are provided in Table 1.

Table1.Vehicle parameters of the SHEV

Vehicle Curb Weight
Rolling radius

3500kg
0.447m

Engine Maximum power
Maximum torque

62kW
227Nm

ISSN 2004-2965 Energy Proceedings, Vol. 20, 2021



Copyright © 2021 ICAE

Generator Maximum speed
Maximum torque

4000rpm
277Nm

Front/Rear
motor

Maximum speed
Maximum torque

7200rpm
320Nm

Battery
pack

Capacity
Voltage

25Ah
347.8V

The deep reinforcement learning algorithm mainly
finds the optimal engine power by controlling the EGS.
The generator and the engine are connected by
mechanical transmission, so their torque and speed
(Tgen, Wgen, Teng, Weng)satisfy the following relationship:

���� = ����, ���� = ����
���� = ���� = ���� ∙ ���� ∙ ����

���� = ���� ∙ ����

����� = ����/(�����)�

(4)

where ηgen and ηeng are the efficiency of generator
and engine;E is the gasoline lower heating
value(4.25×107J/kg) .

As another important power source, energy of
battery pack is established as an equivalent circuit
model by

����� = ��� − ��2

� =
��� − ���

2 − 4������

2�

��� =
�0 − ����

�

(5)

where Pbatt is the power of the battery,Voc is the open
circuit voltage,R is the internal resistance,I is the battery
current,SoC is the state of charge, Q0 is the initial
battery capacity,and Q is the nominal battery capacity.
State-of-Health(SoH) is an important parameter that
characterizes the current state of the battery. However,
there is currently no clear definition of SoH. Identifying
the aging mechanism in the battery is very challenging
[14].Identified aging model [15] we selected has the
form of

�����% = (� ∙ ��� + �) ∙ ���(
−31700 + 163.3 ∙ ��

� ∙ � )

∙ �ℎ0.57

α = 1287.6, SoC ≤ 0.45
1385.5, Soc > 0.45 (6)

β = 6356.3, SoC ≤ 0.45
4193, SoC > 0.45

where Qloss% is the battery capacity loss in percentage
with respect to the nominal capacity,R is the gas
constant, � is the battery temperature expressed in
Kelvin, Ic is the battery current rate,Ah is the Ah-
throughput,and α ,β guarantee SoC dependence.In

this study, we only considered the working condition of
the battery at nominal temperature ���� of 25 ℃.

Reducing the effective Ah-throughput of the battery
is equivalent to delaying the aging of the battery [16],
therefore we define Ah-through as
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where Γ the nominal battery life, γ is the battery
life in specific operating conditions,and δ is severity
factor.

2.3 Control algorithm

We select Deep Deterministic Policy Gradient
(DDPG) algorithm as the control algorithm of the agent,
which can conduct stable training in the continuous
action space. After observing the state of the
environment, the agent performs optimal control
actions based on the reward function.
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where rfollow , renergy and �������� are reward
functions, involving car-following, energy management
and battery aging respectively, ������ is the reference
value of SoC, TTC(Time to Collision) is directly captured
from the simulation platform, �� is the engine power of
target vehicle, and � controls influences of SoH on the
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agent.Through the comparison of multiple experiments,
�=-4, and �=1 can achieve the global optimization.

3. RESULTS AND DISCUSSIONS
We firstly set the driving cycle of the preceding

vehicle to US06_2 in the simulation platform to
evaluate the performance of the proposed strategy.
When using ChinaCity and JN1015 driving cycles to test
the robustness of the strategy, the parameters of the
neural network are adopted from pre-trained algorithm.

3.1 The strategy on-design evaluation

Fig.2 shows the simulation results of adaptive cruise
control under the control of DDPG.The target vehicle
successfully completed the car-following task, and its
actual car-following distance is maintained between the
maximum car-following distance and the minimum car-
following distance at every time step.It is worth noting
that the car-following distance of the target vehicle
changes with the velocity, which effectively prevents
the appearance of dangerous driving behavior.

Figure2.The following distance between preceding
vehicle and target vehicle(US06_2)

Motor torque and SoC trajectories are presented in
Fig.3.When the agent considers the reward function of
battery( � = 1), the torque of the motor changes more
smoothly, while when �= 0, the torque of the motor changes
drastically,which means that the target vehicle frequently
request high C-rate of battery to achieve best fuel
economy.When �= 1, the effective Ah-throughput decreases
by 15.7%;however, the fuel consumption increases only by
3.6%, as shown in Table2. In addition, when �= 1, the SoC
value is below the case of �= 0 most of time.This can be
explained by the aging model (7), that is, lower SoC means
slower aging speed.

Table1.Fuel and battery economy comparisons
The

Value of
Fuel

consumption(L/100km)
Terminal

SoC
Effective

Ah

�
1 3.74 0.32 10.2
0 3.61 0.32 12.1

Figure3.Comparisons of motor torque and SoC
trajectories

3.2 Robustness analysis of proposed strategy

When the driving cycle of preceding car is modified
to JN1015 and ChinaCity, the following car can still
maintain good car-following performance, as shown in
Figure 3 and Figure 4.

Figure3.The following distance between preceding
vehicle and target vehicle(JN1015)
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Figure4.The following distance between preceding
vehicle and target vehicle(ChinaCity)

Compared with the optimal fuel economy case
under JN1015 driving cycle, the effective Ah-throughput
decreases by 57.6%, and the fuel consumption increases
4.7%.Under China-City driving cycle, regarding the best fuel
economy case as a benchmark, the effective Ah-throughput
decreases by 17.1%, and the fuel consumption increases
2.9%. Since the speed and acceleration characteristics of
JN1015 are easier to learn by the agent, the effective Ah-
throughput under this driving cycle is reduced by more than
half.

Table3.Fuel and battery economy comparisons under
different driving cycles

Driving
cycles

Fuel
consumption(L/100km

)

Terminal
SoC

Effective
Ah

JN1015(
β = 1) 2.63 0.57 1.4

JN1015(
β = 0) 2.51 0.56 3.3

China-
City(β = 1) 4.49 0.54 2.9

China-
City(β = 0) 4.36 0.54 3.5

4. CONCLUSIONS
In this work, a DRL-based ecological driving strategy for

SHEVs including battery aging is implemented under different
driving cycles, and the main research findings can be outlined
as follows:

(1)Battery SoH is firstly considered in the ecological
driving strategy based on deep reinforcement learning, and
multi-objective collaborative optimization of car-following
and energy management strategies that considers battery
aging is proven to be meaningful;

(2)The proposed strategy reduces the effective Ah-
throughput by 15.7-57.6%; however, the sacrifice in fuel
economy does not exceed 5%. Experiments under more
driving cycles can help determine a more accurate range of
Ah-throughput reduction and fuel consumption increase.

(3)The proposed strategy shows excellent car-following
and energy management performance under different typical
driving cycles, and is applicable for delaying battery aging.
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