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ABSTRACT 
This study proposes a modified energy planning 

model that considers a broad range of future 
uncertainties. Modifications to hybrid stochastic robust 
optimization and robust optimization methodology allow 
for the introduction of multi-objective functions that 
reflect the various dimensions of energy planning 
including cost, emission, and social impact. Changing the 
priorities of the objective functions generates different 
energy policies, which are then compared. Data 
envelopment analysis is applied to measure the energy 
efficiency of each optimal energy policy produced by the 
energy planning model. Energy efficiency is defined as 
the ability to satisfactory address five main aspects—
cost, emissions, social impact, employment, and 
security. An updated power development plan for 
Thailand is used as an illustrative case study. Empirical 
analysis indicates that a policy that prioritize the 
environment first, followed by social impact and cost, is 
the most efficient among the five alternatives 
considered. Results from the case study offer 
quantitative support for policy makers seeking to devise 
an efficient energy policy that meets extensive 
requirements while still dealing with the bounds of 
uncertain future projections. 
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1. INTRODUCTION 
Energy development across countries tends to focus 

on three dimensions of energy planning: energy security, 
energy equity, and environmental sustainability [1]. 
However, it has been shown in numerous studies that 
other aspects, such as employment and social damage, 
should also be taken into consideration when 
formulating an energy plan [2,3].  

In order to set and achieve relevant energy 
development goals, appropriate multifaceted energy 
planning is necessary. In the field of energy planning, 
considering the uncertainties associated with various 
future projections is essential. To this end, approaches 
such as scenario-based stochastic optimization and 
worst-case-realization robust optimization are well-
known methods that have been used in variety of studies 
[4–6]. The hybrid stochastic robust optimization and 
robust optimization (Hybrid SRO & RO) is an energy 
planning model that simultaneously considers 
uncertainties based on both scenario-based and worst-
case scenario realization stemming from their practical 
condition [6]. The energy mixes resulting from the 
optimization model vary depending on the operative 
constraints and objective functions. 

In energy planning, however, making energy mixes 
decisions by comparing alternatives with multi-
dimensional characteristics can be difficult. Frontier-
based efficiency measurement methods such as data 
envelopment analysis (DEA) are applicable in such cases 
since these approaches are not affected by differing 
indexes [3]. In the field of energy planning, such frontier-
based methods have been reported in several studies 
[7,8].  

Contributions of this paper are: (1) a modification of 
the energy planning model to meet broader and multi-
objective requirements, and (2) decision making tool 
using an efficiency measurement method based on the 
above-mentioned multiple aspects of energy planning. 
To demonstrate the proposed methodology, power 
development of Thailand is served as an instructive case 
study. 

2. MATERIAL AND METHODS  

2.1 Hybrid stochastic robust optimization and robust 
optimization 
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In the Hybrid SRO & RO model, scenarios of 
uncertainties (s) with assumed probabilities of 
occurrence (ps) are generated for discrete projected 
demand levels, capacity factors and the cost of 
renewable energy. Moreover, the bounds of any 
potential optimal energy mix are controlled by a defined 
social impact variation function [6].  

For each scenario, the model determines the values 
of decision variables that include new power plant 
capacity (𝐶𝑖𝑠 ), electricity generated by existing power 
plants (𝐸𝑖𝑠 ), and electricity generated by new power 
plants (𝑁𝑖𝑠), with the objective of minimizing total cost. 
The control constraints of the model can be divided into 
five groups: security of supply, environmental 
protection, economic competitiveness, technical 
specifications of the power plants, and robust 
constraints. (For a detailed description of the 
mathematical equations specifying the objective 
functions and constraints, please refer to [6].) 

2.2 Proposed model modification 

2.2.1 Multi-objective functions 

Rather than employing a single objective function 
focused solely on minimizing total cost in the Hybrid SRO 
& RO model, the model proposed here is modified to 
accommodate multiple objective functions. Based on the 
CPLEX optimization program [9] used to perform the 
calculations in the Hybrid SRO & RO model, the multi-
objective functions are determined by either the 
lexicographic or weighted-sum methods. 

In the lexicographic method, the priority (that is, the 
order) of the objective functions is determined according 
to their relative importance or significance [10]. The 
main advantage of this method is its simplicity and 
computational efficiency. Alternatively, the weighted-
sum method converts the multi-objective problem into a 
mono-objective optimization problem [11]. 

2.2.2 Objective functions 

This paper inclusively considers three specific 
aspects of energy planning—economic cost, emissions, 
and social cost. The economic cost function is established 
from the Hybrid SRO & RO model that includes 
annualized capital expenditure and operational 
expenditures for each power plant of a given type, 
measured in Thai Baht per year (THB/year). 

The emissions function includes the total emissions 
associated with electricity generated by both new and 
existing power plants as shown in (1):  

∑𝑝𝑠 [ ∑ [𝐸𝐸𝑖𝐸𝑖𝑠 + 𝑁𝐸𝑖𝑁𝑖𝑠]

(𝑇+𝑇𝑜)

𝑖=1

]

𝑆

𝑠=1

 (𝟏) 

where 𝑇  and 𝑇𝑜  indicate the set of active power 
plants type and obsolete power plant type respectively. 
𝐸𝐸𝑖  is the emission factor for existing power plants of 
type 𝑖 and 𝑁𝐸𝑖  is the emission factor for new power 
plants of type 𝑖, both measured in tons of carbon dioxide 
per year (tCO2/year). 

Social cost is derived from the compensation 
provided to locals who are adversely affected by the 
operation of the power plants. The rate of compensation 
is based on the type of power plant per amount of 
generated electricity. The social cost function is thus set 
as: 

∑𝑝𝑠 [ ∑ 𝑆𝐶𝑖[𝐸𝑖𝑠 + 𝑁𝑖𝑠]

(𝑇+𝑇𝑜)

𝑖=1

]

𝑆

𝑠=1

 (𝟐) 

where 𝑆𝐶𝑖 is the social compensation rate for a power 
plant of type 𝑖, measured in THB/year. 

2.2.3 Scenarios of uncertainty: Demand forecast 

The scenarios of uncertainty are set according to the 
Hybrid SRO & RO model with minor modifications. In all, 
there are 27 scenarios of uncertainties. The demand 
forecast scenarios include cases in which actual demand 
is 15% lower than the forecast, 10% lower than the 
forecast, and equal to the forecast (corresponding to the 
possible levels of economic decline resulting from the 
COVID-19 pandemic [12]). 

The probability of occurrence for these scenarios is 
assumed to be 0.3, 0.4, and 0.3, respectively, based on 
the uncertainties associated with future increases in 
population and economic growth [13]. The other 
uncertainties in the model, including cost reductions and 
capacity factor increases in renewable energy are 
unchanged from those in the case study described in [6]. 
For further details, please refer to [6].  

2.3 Data Envelopment Analysis 

Data envelopment analysis (DEA) is a frontier-based 
efficiency measurement methodology based on the 
concept of a relatively efficient frontier. Efficiency is 
defined by a scalar measure of the distance between the 
observed decision-making units (DMUs) and the 
production frontier. Assume that there are n DMUs, each 
having m inputs and s outputs, and that xij represents the 
input i of DMU j, and yij represents output r of DMU j. 
The “Farrell model” proposed in [14], the envelopment 
model, with the assumption of constant returns to scale 
(CRS), is formulated as follows:  
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𝜃∗ = 𝑀𝑖𝑛 𝜃 

𝑠. 𝑡. ∑𝑥𝑖𝑗𝜆𝑗 ≤ 𝜃𝑥𝑖𝑜: 𝑖 = 1,2, . . . , 𝑚

𝑛

𝑗=1

; 

∑𝑦𝑟𝑗𝜆𝑗 ≥ 𝑦𝑟𝑜: 𝑟 = 1,2, . . . , 𝑠;

𝑛

𝑗=1

 

𝜆𝑗 ≥ 0: 𝑗 = 1,2, . . . , 𝑛. 

(𝟑) 

where 𝜆𝑗represents the linear coefficient of DMU j and 

θ is the calculated relative efficiency score of DMU o. An 
efficient DMU is indicated by an efficiency score of 1. 

3. CALCULATIONS  

3.1 Decision Making Units, Inputs, and Outputs 

The DMUs in this study are generated from the dot 
product of the different energy policies and scenarios of 
uncertainty. In order to efficiently meet the above-
mentioned multiple requirements, each of the DMUs is 
defined to have four inputs and two outputs. The inputs 
and outputs are all derived from the optimized decision 
variables of the Hybrid SRO & RO model.  

The inputs include total cost, total carbon dioxide 
emission, total social cost, and a power-plant-type 
dependence score for the cost, environmental, social and 
security aspects, respectively. The outputs are total 
generated electricity and employment as related to the 
energy and economic aspects, respectively.  

3.1.1 Cost aspect: Total cost 

The total cost of each DMU is derived from the cost 
function. 

3.1.2 Environmental aspect: CO2 emission 

The total carbon dioxide emission of each DMU is 
derived from the bracketed term in the emission 

function (𝟏): [∑ [𝐸𝐸𝑖𝐸𝑖𝑠 +𝑁𝐸𝑖𝑁𝑖𝑠]
(𝑇+𝑇𝑜)
𝑖=1 ]. 

3.1.3 Social aspect: Social cost 

The total social cost of each DMU is derived from the 
bracketed term in the social cost function (𝟐) : 

[∑ 𝑆𝐶𝑖[𝐸𝑖𝑠 + 𝑁𝑖𝑠]
(𝑇+𝑇𝑜)
𝑖=1 ]. 

3.1.4 Security aspect: Power-plant-type dependency 
score 

To ensure a secure energy supply, power plant 
diversification is required. Diversification lessens the 
vulnerability of the energy system to supply shocks and 
the market power of the various energy supply sources 
[15]. In this study, a power-plant-type dependency score 
is derived from the Hirschman-Herfindahl Index (HHI) 

[16]. Accordingly, the index measures the overall 
dependency of the units in the system. HHI of scenario s 
(𝐻𝑠) is formulated as: 

𝐻𝑠 =∑𝑠𝑖𝑠
2

𝑁

𝑖=1

 (𝟒) 

𝑠𝑖𝑠 =
[𝐸𝑖𝑠 + 𝑁𝑖𝑠]

∑ [𝐸𝑖𝑠 +𝑁𝑖𝑠]
(𝑇+𝑇𝑜)
𝑖=1

 (𝟓) 

where 𝑠𝑖𝑠 is the proportion share of power plant type 𝑖 
in scenario 𝑠. The HHI values are in the range of [1/N, 1]. 
Higher HHI values imply greater energy system 
dependence on a single major energy supply source. 

3.1.5 Energy aspect: Generated electricity 

Total generated electricity is derived from the 
decision variables in the energy planning model (𝐸𝑖𝑠 +
𝑁𝑖𝑠), measured in gigawatt-hours [GWh]. Since the total 
demand for generated electricity is a critical constraint, 
the value of the total generated electricity will be equal 
on every DMU that shares the same amount of projected 
demand. 

3.1.6 Economic aspect: Employment 

Employment is expected from the commissioning, 
manufacturing, and decommissioning of new power 
plants [17]. Its value is calculated as the product of the 
employment factor for each power plant type (in job-
years per megawatt [job-years/MW]) and the capacity of 
the new plant ( 𝐶𝑖𝑠 ) (in megawatt [MW]). The 
employment factors for the various power plant types 
are listed in Table 1. For further detailed, please refer to 
[17]. 

 
Table 1. Employment factor for each power plant type. 

Power plant type 
Employment 

[Job-years/MW] 

Natural gas 4.1 
Coal 17.5 

Fuel oil 4.9 
Diesel 4.9 

Large hydro 9.6 
Small hydro 25.7 

Solar PV 26.5 
Wind: onshore 9.1 

Biomass 26.1 
Biogas 26.1 

Municipal waste 26.1 

3.2 Energy policies 

Four energy policies were compared in the case 
study. The first three policies were set based on the 
lexicographical method, where the objective functions 
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were ranked from highest priority to lowest priority. This 
produced the following three ordered priorities: 
Environment > Social > Cost (designated as the ESC 
order); Cost > Environment > Social (designated as the 
CES order); and Social > Cost > Environment (designated 
as the SCE order).  

The fourth policy (designated as Weights) was based 
on the weighted-sum method, which was used to 
convert all of the objective functions to the same 
monetary units. The emission function was converted to 
equivalent monetary units by multiplying the amount of 
emissions by the carbon tax per unit amount; the cost 
and social functions were already in monetary units.  

3.3 Case study: Thailand 

A case study featuring Thailand’s latest 20-year 
power development plan (Thailand PDP2018) was used 
to illustrate the applicability of the proposed model, as in 
[6]. To ensure currency, the parameters of the model 
were updated from the from 2018 values used in [6] to 
the more recent 2020 values [18]. These current 
parameters were derived from multiple sources [13,18–
21] . 

In developing the case study, it was assumed that (1) 
the conversion rate from US dollars (USD) to Thai Baht 
(THB) is 33 THB/USD, (2) the carbon tax rate is 30 Thai 
Baht per kilogram of carbon dioxide, and (3) 
commissioning new combined-cycle and thermal power 
plants already includes carbon capture storage systems. 

4. RESULTS AND DISCUSSION  

4.1 Energy mix results 

The Hybrid SRO & RO model was solved using CPLEX 
[9]. In each iteration, 𝐶𝑖𝑠, 𝐸𝑖𝑠, and 𝑁𝑖𝑠 were optimized 
for each power plant of type 𝑖 for each scenario 𝑠. 

The boxplots in Fig. 1 show the ranges of possible 
total cost, total emission, total social cost, total 

employment, and the power-plant-type dependency 
scores resulting from the different policies, along with 
the variation in results from the different scenarios. 
These results are derived from the optimal energy mixes 
of the Hybrid SRO & RO model. The bottom and top 
edges of the boxes indicate the 25th and 75th percentiles, 
respectively; the red horizontal line inside each box 
indicates the median value. The “X” markers identify the 
weighted average value using the probability of 
occurrence of the scenario. Note that the difference in 
policies changes the structure of the optimal energy 
mixes. 

According to Fig. 1, the weighted average results 
correlate with the priorities assigned to the objective 
functions: That is, ESC tends to have the lowest total 
emission, while CES tends to have the lowest total cost 
and SCE tends to have the lowest total social cost. It can 
be inferred from Fig. 1 that total social cost is directly 
related to total employment, but inversely related to the 
power plant dependency score. 

Notably, SCE appears to show higher variation in 
every aspect of the results. Moreover, SCE trades off 
distinctly higher costs and emissions in seeking to 
minimize the social cost. With results generally between 
those of the other policies, Weights appears to be a 
compromise policy. 

 
Fig. 1. Results for the four energy policies. 

 
Fig. 2. Efficiency scores for the four energy policies. 
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4.2 Efficiency scores 

DEAP Version 2.1 [22] was used to determine the 
relative efficiency score of the DMUs. Since there were 
four different energy policies resulting from the Hybrid 
SRO & RO model, including ESC, CES, SCE, and Weights, 
with each policy having 27 scenarios, there were 108 
DMUs in the case study.  

Boxplots showing the efficiency score variation for 
each policy are shown in Fig. 2. Under the assumed 
scenario of uncertainties, ESC had the highest weighted 
average efficiency score (0.9988). CES had a weighted 
average score of 0.9922. Weights had a weighted 
average score of 0.9897, and SCE had the lowest 
weighted average efficiency score (0.9866).  

4.3 Discussion 

It can be inferred that the results shown in Fig. 1 
directly shape the efficiency scores in Fig. 2, i.e., the high 
variation in SCE results produces a wide range of 
efficiency score, while the intermediate results 
associated with Weights produce intermediate efficiency 
scores. The boxplots in Fig. 2 also suggest that the ESC 
results are the least sensitive to changes in the 
uncertainty scenarios.  

Given the proposed definition of energy efficiency 
and the realized uncertainties associated with the energy 
planning, it appears that the lexicographical ordering 
that priorities environment first, followed by social 
impact and cost (i.e., ESC), is the preferred policy in the 
illustrative case study.  

4.4 Conclusion 

This study proposed modifications of the hybrid 
stochastic robust optimization and robust optimization 
model that reflect the multi-dimensional requirements 
of energy planning including cost, emission, and social 
impact. Data envelopment analysis (DEA) was used to 
measure the energy efficiency of each optimal energy 
policy resulting from the modifications. Empirical 
analysis of Thailand’s power development plan shows 
that the policy that prioritizes the environment first, 
followed by social impact and cost, is the most preferable 
policy among the five options. The main findings 
contributed from this study is the importance of the 
proposed decision-making approach, through the 
application of DEA, in order to efficiently meet multiple 
aspects of energy planning. Moreover, empirical results 
of the type reported here provide quantitative support 
for policy makers seeking to devise efficient energy plans 
that meet multi-aspect requirements, while taking into 

account uncertainties inherent in any energy planning 
process. 
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