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ABSTRACT 
As one of the most important supervisory control 

functionalities, the energy management strategy (EMS) 
of a hybrid electrified vehicle (HEV) optimizes the use of 
onboard energy resources for energy conservation and 
emission mitigation. Engine Start-up proved to have 
great contribution to fuel consumption and emission. A 
deep reinforcement learning based EMS is proposed for 
a power-split HEV to reduce the energy consumption and 
emission by recognizing start-up conditions and 
decreasing the start-up frequency. The EMSs based on 
Proximal Policy Optimization (PPO) and Twin-delayed 
Deep Deterministic Policy Gradient (TD3) are also 
compared in transient working condition frequency. 
Simulation study is conducted to demonstrate the 
advantage of the proposed energy management 
method. The EMS considering fuel consumption 
minimization and irrational actions avoidance is 
optimized by running the vehicle model under the WLTC 
condition repeatedly. PPO can get 9.02% lower fuel 
consumption, 25.6% lower start-up times and 8.2% 
transient working condition percentage than TD3. PPO is 
more suitable in the EMS domain. 
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NONMENCLATURE 

Abbreviations  

EMS Energy Management Strategy  
PPO Proximal Policy Optimization 
TD3 Twin-delayed DDPG 

1. INTRODUCTION 
In recent years, new vehicle power-trains are 

researched and developed by both industry and 
academia. The ever-increasingly strict legislations and 
regulations require the continuous reduction of fuel 
consumption [1] and pollutant emission levels [2, 3]. While 
electric vehicles (EVs) can be a solution, the deficiency in 
driving ranges, charging infrastructure, unaffordable 
battery cost limit the EV spreading nowadays. Hybrid 
Electric Vehicles (HEVs) are now a promising solution 
which combine the benefits of conventional combustion 
engines and novel electric motors. The energy 
management strategy (EMS) plays the most critical role 
for HEV CO2 emission control as a supervised strategy 
and much effort is made to determine the distribution of 
power from each source (engine or motor) 
simultaneously satisfying the driver’s demand, 
minimizing energy consumption/emissions, and 
maintaining the battery’s state-of-charge (SOC). 

Recently, learning-based EMS has emerged which is 
based on reinforcement learning (RL) and can be applied 
model-free which can simplify the model establishment 
[4, 5]. Compared to traditional RL, which can hardly handle 
high dimensional problems, the combination of RL with 
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neural networks called deep reinforcement learning 
(DRL) can be used to establish EMS suitably. 

There are several groups who made research of the 
DRL-EMS with different algorithms. Qi used Deep Q-
Learning (DQL) and Dueling DQL to establish an EMS for 
a power-split PHEV. The action vector needs to be 
divided discrete to apply the algorithm [6]. Inuzuka 
established an EMS with Proximal Policy Optimization 
(PPO) and used a rule-based controller to filter the 
irrational control actions [7]. Lian used Deep Deterministic 
Policy Gradient (DDPG) and combined it with transfer 
learning [8, 9]. 

As far as the authors know, there is no research 
considering the engine start-up conditions which is 
coupled with the fuel consumption and emission worsen 
conditions [10]. Furthermore, most of the research 
applied deterministic algorithms to obtain the optimal 
strategy. However, the exploration ability of 
deterministic algorithms is poor and it will increase the 
fluctuation of control signals. Moreover, engine working 
point jump is another severe problem in DRL-based EMS, 
the engine transient conditions of engine can deteriorate 
fuel consumption and emissions, as well as the system 
lifetime [11]. This is the unique problem in the domain of 
HEV EMS, so the applicability of different DRL algorithms 
should be evaluated. 

The main contributions of this paper are: 1) to obtain 
an optimal strategy in consideration of the engine start-
up; 2) to compare the applicability of a stochastic 
algorithm and a deterministic algorithm in the EMS 
domain. 

2. MATERIAL AND METHODS 
The method used in this paper is based on i-EMS 

framework which is shown in Fig. 1.  

2.1 Environment 

A vehicle model is built that does not taken the mass 
inertia and transient process into account to train and 
evaluate EMS. The hybrid vehicle configuration used is 
the second generation of Prius THS system as seen in Fig. 

2 [12] and the parameters of the vehicle are listed in Table 
1. 

The vehicle dynamics include the driving resistance 
caused by rolling friction and aerodynamic drag. The ICE 
fuel consumption is modelled by a map obtained from a 
power-train test bench as in Fig. 3. With the speed and 
torque of the engine being chosen, the fuel consumption 
can be determined by the fuel map, the speed and 
torque of motor and generator can also be calculated by 
the gear ratio of the planetary gears[13]. 

 
Table 1. Parameters of the vehicle 

 Parameters Value 

Vehicle Curb weight 1449 kg 

Rolling resistance coefficient 0.013 

Air resistance coefficient 0.26 

Frontal area 2.23 m2 

Traction 
motor 

Maximum power 50 kW 

Maximum torque 400 Nm 

Maximum speed 6000 rpm 

Generator Maximum power 37.8 kW 

Maximum torque 75 Nm 

Maximum speed 1000 rpm 

Engine Maximum power 56 kW 

Maximum torque 120 Nm 

Maximum speed 4500 rpm 

Battery Capacity 1.54 kWh 

Voltage 237 V 

Transmission Gear ratio from ring gear to 
wheel 

3.93 

Characteristic parameter 2.6 

 
The models of motor and generator are the 

corresponding efficiency maps from bench experiments 
respectively. The Ni-MH battery is modelled by an 
equivalent circuit model ignoring the temperature 
change and battery aging as in Github of Lian [14] as seen 
in Fig. 3. 
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Fig. 1. The framework of i-EMS 
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In this paper the engine start-up conditions are 
recognized as when the engine speed was zero in the last 
state and is positive in the current state and there will be 
a Boolean variable named Start in the vehicle model: 

  (1) 

Generally, the fuel consumption of start-up 

condition will be idling for 10 seconds and the emission 

of start-up condition will be idling for 30 seconds [15, 16].  

In this paper, only fuel consumption of start-up 

conditions is considered. The punishment is set in the 

environment (i.e. set in the vehicle model) as (2) and the 

agent will learn to recognize and avoid frequent start-up 

conditions by itself through training. 

  (2) 

where  is the fuel consumption output of the vehicle 

model;  is the steady fuel consumption 

obtained from the engine map. 
The scene used to train the agent is the WLTC driving 

cycle because it has low, medium, high and extra high 
four parts to represent variable driving conditions. 

2.2 Agent 

The EMS is represented by a neural network, PPO [17] 
and TD3 [18] are adopted and compared in this paper to 
update parameters of the EMS as a stochastic DRL 
algorithms and a deterministic DRL algorithms, 
respectively. The process of update is based on the 
trajectories (state, action and reward) generated by 

iterative interactions between the Agent and the 
Environment. 

With the speed and acceleration of the vehicle and 
the radius of wheel, the required torque and rotational 
speed of the wheel can be calculated. According to the 
THS dynamic model, the control signal selected in this 
paper are the speed and torque of the engine. Thus the 
state vector and action vector are defined as (3) and (4) 
in this paper. 

  (3) 

  (4) 

where  is the speed of the vehicle and  is the 

acceleration of the vehicle in current state, they are 

determined by the driving cycle.  is the engine 

speed in last state used to recognize the engine start-up 
conditions. 

Reward includes the fuel consumption, the variation 
of SOC and the punishments for irrational actions, as in 
(5): 

 (5)  

where α，β，γ are the coefficients of fuel consumption, 
variation of SOC and the punishments, respectively.  

The specific definition and setting of the variable Inf 
can be seen in other paper of the authors, it will not be 
explained here. 

3. RESULTS 

3.1 The strategy performance 

The SOC trajectory and engine operation points of 
PPO are shown in Fig. 4. In the low speed part of the 
cycle, most of the power is supplied by battery and SOC 
declined continuously, the engine barely works and only 
works at idling speed to sustain SOC. In the medium 
speed part, fuel and electricity drives the vehicle 
simultaneously. The SOC increases slightly and engine 
works at the points below 14kW. In the high speed part 
and extra high speed part, the engine working point is 
optimized to balance the SOC and lower the fuel 
consumption. The speed and torque of engine vary in a 
wide range to adapt different conditions. The engine and 
the battery work in coordination to drive the car 
meanwhile optimize the fuel consumption and SOC 
variance. 

 
a. Engine Model 

 
b. Motor Model 

 
c. Generator Model 

 
d. Battery Model 

Fig. 3. The model of engine, motor, generator and battery 
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Compared with the results including fuel 
consumption with 3.224L/100km and start-up times with 
46, which did not consider the engine start-up conditions 
in PPO training process, the strategy in consideration of 
start-up punishment can obtain 6.73% lower fuel 
consumption and 37.25% less start-up times. This 
demonstrated that DRL-based EMS has the ability to 
recognize the fuel deterioration of start-up conditions 
and optimize the total fuel consumption. 

The agents using TD3 and PPO are trained for similar 
time and the SOC trajectory and engine operation points 
of TD3 are shown in Fig. 5. It can be seen that the SOC 
trajectory and engine working mode are similar which 
demonstrates that the optimal strategy obtained from 
different algorithms will be similar. However, the engine 
operation points are quite different from each other, TD3 
is more likely to work in high speed conditions and there 
are more transient working conditions. 

3.2 Comparison of PPO and TD3 

The fuel economy, start-up frequency, transient 
working condition percentage of both algorithms are 
compared as seen in Table. 3. The transient working 
conditions are defined by setting a threshold for torque 
derivative. When the absolute value of the derivative is 
less than 20 Nm/sec, then the operating condition is 
considered to be steady [11]. It can be seen that the 
strategy obtained by PPO can get less fuel consumption, 
less start-up times and less engine transient working 
condition percentage. 

TD3 is based on DDPG which is a deterministic policy 
optimization algorithm, and this kind of algorithm will 
output a deterministic action under one state and has a 
poor exploration ability. Whereas PPO is a kind of 
stochastic policy optimization algorithm which will 
output a distribution of action and has a better 
exploration ability. At the same time, TD3 is much more 
sensitive to the setting of hyperparameter. Hence, the 
strategy obtained by PPO has better performance than 
that obtained by TD3. Stochastic policy optimization 

  
Fig. 4. SOC trajectory and engine operation points of PPO 

  
Fig. 5. SOC trajectory and engine operation points of TD3 

Table. 3. Statistic data of strategies from PPO and TD3 

Algorithm Fuel Consumption/100km (L) Start-up Times (n) Transient Working Condition Percentage (%) 

PPO 3.007 29 10.8% 

TD3 3.305 39 19.0% 
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algorithm can achieve less transient working condition 
percentage so that it is more suitable in this kind of EMS 
control problem. 

4. CONCLUSIONS 
In this paper, a deep reinforcement learning based 

energy management strategy in consideration of the 
engine start-up conditions for a rough Prius model is 
established. Meanwhile a comparison of PPO and TD3 is 
conducted to update the parameter of the strategy. The 
results showed that this kind of DRL-based EMS can 
recognize the fuel consumption worsen of start-up 
conditions in environment and give a satisfied 
performance. Stochastic policy optimization algorithm 
can get 8.2% less transient working condition percentage 
and it is more suitable in EMS control problems. 
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