
Selection and peer-review under responsibility of the scientific committee of the 13th Int. Conf. on Applied Energy (ICAE2021). 
Copyright © 2021 ICAE  

 

International Conference on Applied Energy 2021 
Nov. 29 - Dec. 5, 2021, Thailand/Virtual 

Paper ID: 055 

Increasing the skill of short-term wind speed ensemble forecasts combining 
forecasts and observations via EMOS 

 
 

Gabriele Casciaro1*, Andrea Lira-Loarca1, Andrea Mazzino1,2 

1 Department of Civil, Chemical and Environmental Engineering. University of Genoa, Via Montallegro 1, Genoa, 16145, Genoa, Italy 

2 Istituto Nazionale di Fisica Nucleare, Sezione di Genova, Via Dodecaneso 33, Genoa, 16146, Genoa, Italy 

* Corresponding Author 

 

ABSTRACT 
 All numerical weather prediction models used for 

the wind industry need to produce their forecasts 
starting from the main synoptic hours 00, 06, 12, and 18 
UTC, once analysis become available. The six-hour 
latency time between two consecutive model runs calls 
for strategies to fill the gap by providing new accurate 
predictions having, at least, hourly frequency. This is 
done to accommodate the request of frequent, accurate 
and fresh information from traders and system 
regulators to continuously adapt their work strategies. 
Here, we propose a strategy where quasi-real time 
observed wind speed and weather model predictions are 
combined by means of a novel Ensemble Model Output 
Statistics (EMOS) strategy. The success of our strategy is 
measured by comparisons against observed wind speed 
from SYNOP stations over Italy in the years 2018 and 
2019. 
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1. INTRODUCTION 
Global cumulative installations of onshore and 

offshore wind are expected to exceed 1 TW before 2025 
(Global Wind Energy Council, 2021). This means that the 
contribution of wind power in power systems is 
becoming increasingly important. The downside is that 
detailed schedule plans and reserve capacity must be 
properly set by power system regulators (Impram et al., 
2020) facing the intrinsic problem of the highly 
intermittent nature of wind, making this very hard to 

predict. The accuracy of wind forecasts thus becomes an 
issue of paramount importance for the wind industry. 

In a recent work by Casciaro et al., 2021, a novel 
accurate Ensemble Model Output Statistics (EMOS) 
strategy for calibrating wind speed/power forecasts from 
an Ensemble Prediction System (EPS) has been proposed 
and its superiority when compared against more 
parsimonious strategies in the 0-48 h look-ahead 
forecast horizon clearly emerged. However, because all 
global weather models start their run from analysis 
corresponding to the main synoptic hours 00, 06, 12, and 
18 UTC, weather predictions (of any forecast horizons) 
necessarily remain frozen for six hours. This limitation is 
in sharp contrast with the needs of power system 
regulators, as well as of traders for marketing wind 
energy, who need to adapt their strategies hour after 
hour. It is thus highly important to propose accurate 
strategies which give fresh information on the wind 
speed in a given location continuously evolving between 
two consecutive main synoptic hours. Proposing a 
strategy with such characteristics is the main aim of the 
present paper. In plain words, we propose a novel EMOS 
strategy where the mean entering in the EMOS 
predictive probability density function now also depends 
on observed wind speed data. For our strategy to be used 
operatively, observed wind speed on the site of interest 
must be available in quasi-real time, other than as a 
record of past observations for calibration purposes. 

2. WIND DATA 

2.1 Observed data: SYNOP stations 

From 2018 to 2019, SYNOP meteorological 
measurements were collected at 43 locations around 
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Italy. According to ICAO regulations, the SYNOP 
anemometers record the wind speed as an average over 
10 minutes (ICAO, 2007). Selected stations have an 
hourly time interval of the observations. 

2.2 Forecast data: the ECMWF Ensemble Prediction 
System (EPS) 

The ECMWF Ensemble Prediction System (EPS) has 
51 members: 50 forecasts which add a small 
perturbation to the best-known initial condition and one 
control forecast with no perturbations (Buizza, 1995; 
Leutbecher and Palmer, 2008). The EPS used in this study 
has a resolution of about 18 km (Persson, 2001) and a 
spectral triangular truncation, a cubic-octahedral grid 
Tco639, and 91 layers with a top of atmosphere pressure 
of 0.01 hPa (Buizza, 2018). 

3. METHODS 
Gneiting et al. (2005) presented the Ensemble Model 

Output Statistic (EMOS), an easy-to-implement statistical 
post-processing tool that permits the calibration of an 
ensemble forecast as the EPS. Let us analyze the method, 
from its standard form to more sophisticated settings. 

3.1 The standard EMOS 

Let us denote by 𝑋1, … , 𝑋𝑘 the K ensemble member 
forecasts of a univariate continuous, positive-defined 
variable Y, here the wind speed at a given location and 
look-ahead time. The EMOS method uses a parametric 
distribution of the following general form: 

𝑌|𝑋1, … , 𝑋𝑘~𝑓(𝑌|𝑋1, … , 𝑋𝑘) 
where the left-hand-side means that the distribution is 
conditional on the ensemble members. 
For this study the gamma distribution is used, and its 
Probability Density Function (PDF) is denoted as 

𝒢(𝜇, 𝜎2) 
where the mean, 𝜇, and variance, 𝜎2, are defined as, 

𝜇  =  𝑎 + 𝑏1 𝑋1  +   …   +  𝑏𝐾  𝑋𝐾 

𝜎2 = 𝑐 + 𝑑𝑆2 

with, 𝑎, 𝑏1, ⋯ , 𝑏𝐾 , 𝑐, 𝑑  representing the non-negative 
EMOS coefficients, and 𝑆2  the ensemble spread 
defined as the EPS members variance. 
Gneiting et al. (2005) suggested an approach based on 
the minimization of the Continuous Ranked Probability 
Score (CRPS) (Hersbach, 2000) to find the EMOS 
coefficients. The latter is defined as follows: 

𝑐𝑟𝑝𝑠(𝐹, 𝑌) = ∫ [𝐹(𝑡) − 𝐻(𝑡 − 𝑌)]2𝑑𝑡
∞

−∞

 

where 𝐹  is the cumulated probability of 𝒢, 𝑌 is the 
observation, and 𝐻  is the Heaviside function, which 
returns 0 if 𝑡 <  𝑌, and 1 otherwise. So, considering the 

forecast vector 𝑿 = (𝑋1, ⋯ , 𝑋𝐾) , in a training set of 
pairs of forecasts and observations, the quantity to be 
minimized is: 

𝐶𝑅𝑃𝑆 =
1

𝑁
∑ 𝑐𝑟𝑝𝑠(𝑋𝑖 , 𝑌𝑖)

𝑁

𝑖=1

 

where 𝑖 represents the i-th pair observation-forecast 
and 𝑁 is the total number of pairs in the training set. 

3.2 The EMOS+4r strategy 

The standard EMOS approach (Gneiting et al., 2005, 
Thorarinsdottir and Gneiting, 2010) is characterized by 
three main aspects: 
1. the length of the training period is usually of 40 days 

before the day of the forecast; 
2. the considered forecasts are those corresponding to 

the grid point closest to the observations; 
3. the predictive distribution is conditional on the sole 

ensemble observables that need to be forecasted.  
Casciaro et al., 2021 proposed an evolution of the EMOS 
strategy divided in three steps by relaxing these points 
using a larger training set. 
The first step is to add conditionings to the parametric 
distributions in addition to those on variables 
representing the weather quantity of interest. 
So, the EMOS method in its standard form is modified as 
follows: 

𝑌 ∣ 𝑋1, … , 𝑋𝐾; 𝑍1, … , 𝑍𝑀~𝒢( 𝑌 ∣∣ 𝑋1, … , 𝑋𝐾; 𝑍1, … , 𝑍𝑀 ) 
where 𝑍1, ⋯ , 𝑍𝑀  are 𝑀  variables used for 
conditioning. 
The second step is to consider the calibrated forecasts on 
the 4 grid points around the considered station by 
merging them with a conditional EMOS as in the first 
step, obtaining the mean value as: 

μ𝑖 = 𝑎(𝑍) + 𝑏𝑖𝑗(𝑍)𝑋𝑖
𝑗
 ,      𝑖 = 1, ⋯ , 𝐾   𝑗 = 1, ⋯ ,4 

where 𝑗, spans over the 4 model grid points around the 
station. 
The final step is to make an EMOS using as training set a 
rolling window of 40 days as proposed by Gneiting et al., 
2005. 
Such combined strategy is called EMOS+4r by Casciaro et 
al. (2021). 

3.3 The use of the observed data 

Our idea here for improving short-time forecasts is to 
combine model forecasts with quasi-real time 
observations. 
Two quantities are used for this purpose. The first is the 
observed wind speed at a given time (e.g., 06 UTC), while 
the second is the error of the prediction with respect to 
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the observation at the same reference time. To take 
advantage of this strategy without losing the benefits of 
EMOS+4r, we simply combined both of them in terms of a 
new EMOS we will detail below. 
Let us consider 𝑃ℎ the observation and 𝐸ℎ the error of 
the forecast with respect to the observation at the 
reference hour ℎ (e.g., 06 UTC). The standard EMOS is 
modified as: 

𝑌 ∣ 𝑋1, … , 𝑋𝐾 , 𝑃ℎ , 𝐸ℎ; 𝑍1, … , 𝑍𝑀  
~𝒢( 𝑌 ∣∣ 𝑋1, … , 𝑋𝐾 , 𝑃ℎ , 𝐸ℎ; 𝑍1, … , 𝑍𝑀 ) 

with the mean, 𝜇, of the predictive gamma Probability 
Density Function (PDF) given by: 

𝜇  =  𝑎 + 𝑏1 𝑋1  +   …   +  𝑏𝐾  𝑋𝐾  +  𝑏𝑝 𝑃ℎ  + 𝑏𝑒  𝐸ℎ 

where 𝑏𝑝  and 𝑏𝑒  are the non-negative EMOS 

coefficients associated to the 𝑃ℎ and 𝐸ℎ variables. The 
variance, 𝜎2, is assumed as in the standard EMOS. 
All coefficients will be determined by CRPS minimization. 
We dub this approach EMOS+4ro where “o” stays for 
observation. 

4. STATISTICAL INDICES 
The Skill Score (SS) metric (Wilks, 2011) will be used 

to evaluate the goodness of this new approach. The skill 
score compares the calibrated forecast to a reference 
forecast to quantify how better it is. Lower bounds differ 
depending on the score used to compute the skill (the 
MAE normalized with the mean of the observations, i.e. 
NMAE, and the correlation coefficient, i.e. Pearson 
coefficient; for more details see Wilks, 2011) as well as 
the reference forecast used. Upper boundaries, on the 
other hand, are always 1 and means a perfect 
performance. In plain words, the skill score is defined as 

𝑆𝑆 =
𝐴 − 𝐴𝑟𝑒𝑓

𝐴𝑜𝑝𝑡 − 𝐴𝑟𝑒𝑓
 

with 𝐴  being the error index value of the calibrated 
forecast, 𝐴𝑟𝑒𝑓 is the error index value of the reference 

forecast, and 𝐴𝑜𝑝𝑡 is the optimal index value. 

5. RESULTS  
Let us now analyze the improvement of our forecast 
using observed data starting from the persistence as a 
reference to arrive at the best calibration strategy 
presented by Casciaro et al. (2021) as a reference. 
Let us assume to have an observation available at h=06 
UTC and need to predict the hours from 07 UTC.  
Fig. 1 shows the NMAE and the correlation coefficient 
skill scores of the forecast calibrated with the EMOS+4ro 
using as reference the persistence. Results are shown as 
the mean of 43 SYNOP stations over Italy. Except for the 
first hour in which the NMAE of the persistence turns out 

to be slightly better, the use of the EMOS calibration 
turns out to be significantly better for both the NMAE 
and the correlation coefficient. 
The NMAE and the correlation coefficient skill score of 
the EMOS-calibrated forecast conditioning on the sole 
day hours and using the observed data (a strategy here 
denoted by EMOS0) using as a reference the same 

EMOS0, but with no use of observed data, is shown in Fig. 
2. From the figure, using the observed data leads to an 
overall improvement of the forecast. As expected, the 
improvement is greater closest to the time of the 
observation. 
Ascertained the fact that compared to a standard EMOS 
the observed data leads to an improvement of the 
prediction, we now want to assess if, and how much, this 
improvement appears when observed data are used in 
combination with the best calibration strategy EMOS+4r. 
Dubbing the resulting strategy as EMOS+4ro , Fig. 3 shows 
the skill score of NMAE and correlation coefficient of the 
prediction calibrated with the EMOS+4ro compared with 
the prediction calibrated with the EMOS+4r. The result is 
similar to that reported in Fig. 2 with a relevant 

 
Fig. 1. Skill score of NMAE and correlation coefficient of the 
forecast calibrated with the EMOS+4ro, using the persistence 

as reference forecast. 

 
Fig. 2. Skill score of NMAE and correlation coefficient of the 

forecast calibrated with the EMOS0 conditionated on day 
hours and using the observation data, using the EMOS0 

conditionated on day hours as reference forecast. 
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improvement in the first hours of the forecast. Unlike the 
previous case, however, the decay appears to be faster, 

leading to an improvement only in the first 6 hours after 
the observation. 
Finally, to assess how this improvement changes by 
varying the observation hour, h. Fig. 4 shows the mean 

and variation of the NMAE and correlation coefficient 
skill score of four cases in which h = 00, 06, 12, and 18 
UTC. From the figure it is confirmed that the use of 
observed data leads to a considerable improvement in 
the first few hours and then decay to zero after about 5/6 
hours, regardless of the selected hour of observation, h.  

6. CONCLUSIONS  
Quasi-real time wind speed observations and model 
forecasts have been combined in a new EMOS strategy 
to increase the forecast skill in the 6-hour horizon 
measured from the hour at which the observation is 
available. The added value of our strategy clearly 
emerged from our study. The improved forecast for the 

wind speed can be trivially translated in added value for 
the wind power forecast with many useful applications 
for the whole wind industry. 
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Fig. 3. Skill score of NMAE and correlation coefficient of the 
EMOS+4ro calibration using EMOS+4r calibration as reference. 

Fig. 4. Skill score of NMAE and correlation coefficient of the 
forecast calibrated with the EMOS+4r using the observation 

data, with the one calibrated with EMOS+4r as reference 
forecast. Continuous lines: averages of the skill scores 

obtained for observed data available at 00, 06, 12, and 18 
UTC; shaded areas respresent the variation of the skill score.    

 
The skill score is shown as the mean and the variation of the 
skill score for the forecast obtained using as last observation 

the one at the 00, 06, 12 and 18 UTC. 
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