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ABSTRACT 
 With the goal of net-zero expected to be 

accomplished in recent decades, the development of a 
thermoelectric generator, one of the energy harvesting 
technologies, is important. Along with efforts to discover 
more cost-effective thermoelectric materials, geometric 
and structural optimization of thermoelectric generators 
is essential to maximize power and efficiency. This work 
demonstrates a segmented thermoelectric generator, 
one of the advanced structures of a thermoelectric 
generator, modeling using artificial neural networks. 
After training the artificial neural networks, we have 
achieved 98.9% accuracy compared to COMSOL 
simulation results under constant temperature 
difference while speeding up the computational speed 
over a few thousand times. This new approach illustrates 
the advantages of the modeling of segmented 
thermoelectric generators. 
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1. INTRODUCTION 
  The importance of renewable energy and energy 

harvesting is increasingly attracting the attention of 
society. In 2021, the International Energy Agency, 
together with several countries, set the goal of achieving 
net-zero by 2050 [1]. This renders a significant challenge 
in the development of novel clean renewable energies 
that can be harvested to replace conventional fossil-
based energy. Traditional forms of energy (e.g., fossil 
energy) have a conversion rate of less than 50%, a large 
proportion of which is lost in the form of heat.  

A thermoelectric generator (TEG) is a device that can 
harvest thermal energy and convert it into electricity. 

Research into this type of renewable energy is therefore 
important to achieve net-zero and reduce dependence 
on fossil fuels. TEGs are based on the Seebeck effect, 
when heat is applied to the n-type material and p-type 
material, electric current will be generated. So by using 
this effect and placing the two materials thermally in 
parallel but electrically in series, a current can be 
generated within the thermoelectric generator [2]. 
Current research of TEGs normally falls into two main 
areas, thermoelectric materials improvement, and TEG 
structure optimization. Research on materials is mainly 
focused on developing materials with high figure-of-
merit (ZT). The latest research has led to many 
breakthroughs in materials. For example, SnSe [3], PbTe 
[4] achieves ZT greater than 2 at high temperatures, 
usually over 600K, and other lower temperatures 
materials, e.g. Bi2Te2.7Se0.3 [5] (ZT=1.04@400K).  

Nonetheless, obtaining high ZT thermoelectric 
materials will not guarantee a high TEG power 
performance. To transfer the high thermoelectric 
properties into power generation, the structure of the 
thermoelectric generator needs to be developed and 
optimized for it to work at its optimum level. TEG with 
segmented thermoelectric legs has been proposed [6]. 
By joining thermoelectric materials with high ZT values in 
different temperature ranges in one leg, the segmented-
TEG (STEG) can significantly improve the power 
performance especially at the condition where the 
temperature gradient across the TEG is large. However, 
optimization of STEG can be challenging due to the 
complex interaction between different geometrical 
parameters (e.g., leg dimension, fill factor), temperature-
dependent thermoelectric properties (e.g., Seebeck 
coefficient, thermal/electrical conductivity), and 
complicated thermoelectric phenomena (e.g., 
Thompson effect). For each optimization, a TEG model 
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that can accurately reflect the relation between 
parameter and power performance needs to be first 
developed. The most common way of modeling is by 
simplifying physical processes and summarising 
mathematical formulas. For example, Kim et al. 
developed a simplified mathematical model for a STEG 
[7]. Zhu et al. reported a mathematical model even more 
accurate by simplifying the thermoelectric generator to 
a 1-D model, specializing in the variation of parameters 
on the legs of STEGs [8]. However, the accuracies of 
these mathematical models are often limited because 
several physical factors are ignored in the modeling. 3D 
TEG finite element models enabled by commercial 
software (e.g. COMSOL and ANSYS) can consider all 
thermoelectric factors and environmental conditions 
and achieve accurate TEG power performance prediction 
[9]. Yet using that software is extremely dependent on 
computational resources and can be time-consuming. 

Artificial neural network (ANN) is one of the 
structures in deep learning [10]. The basic structure of 
ANN is a neuron. It simulates the real neuron in biology. 
By combining many neurons, the network can process a 
large amount of information. The network is then 
brought close to the target by a gradient descent 
algorithm. Such networks rely on the complexity of the 
system to process information by adapting the 
relationships between the large number of nodes 
interconnected within it. Recently, ANNs have been used 
in a wide variety of fields, such as image recognition [11], 
nano-photonics[?]. More importantly, ANN can find 
patterns in massive data that are normally difficult for 
researchers to figure out. By training using a pre-
generated dataset, it is possible to model directly, 
bypassing complex physical definitions, and then explore 

the physical meaning in the physical model. It is 
therefore very suitable for the study of TEGs. Our group 
has recently developed a set of ANNs that enable 
accurate modeling of conventional bulk TEG under 
different operating conditions [12]. The superiority of 
ANN for modeling bulk TEGs is demonstrated through 
accuracy of 98% but with computational efficiency over 
1000 times higher than COMSOL simulations. This ANN 
model has an accuracy close to that of the finite element 
analysis method, as well as an ultra-fast computing 
speed, so we have further extended this method to the 
more complex TEG model, the segmented TEG. 

In this work, we further explored the modeling of the 
complicated STEG structure using ANN under constant 
temperature differences. The ANN will be first developed 
through a training process with a dataset generated from 
3-D COMSOL simulation. The prediction performance 
such as accuracy and efficiency of the trained ANN will 
be presented and compared with the simulated results.  

2. METHOD  

2.1 Physical model and parameters description 

Fig. 1a shows the STEG model investigated in this 
work. The green part represents the AlN ceramic layer.  
For n-type leg, PbTe0.998I0.002-3%Sb [13] was selected as 
the high-temperature material (purple) and Bi2Te2.7Se0.3 
[5] was selected as low-temperature material (pink). For 
p-type leg, K0.02Pb0.98Te (black) [14] and Bi0.5 Sb1.5Te3 
(green) [15] were selected as high and low temperature 
materials, respectively. These materials were developed 
from past studies where the temperature-dependent 
properties are shown in fig. 1b-1e. The electrode (yellow) 
is made of copper. 

 
Fig. 1. (a) Schematic of Segmented TEG. (b) Electrical conductivity, (c) Seebeck coefficient, (d) thermal conductivity and (e) ZT in 
STEG. 
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    The ranges of all parameters that need to be 
optimized are shown in Table.1. These parameters are 
divided into two categories: geometrical parameters and 
operating conditions. The geometrical parameters 
include the leg height of STEG 𝐻𝐻𝑇𝑇𝑇𝑇 , 𝐹𝐹𝐹𝐹 , n-type high-
temperature material height ratio 𝑅𝑅𝑁𝑁𝑁𝑁, and p-type high-
temperature material height ratio 𝑅𝑅𝑃𝑃𝑁𝑁 . The working 
conditions include the temperature of the hot side 𝑇𝑇ℎ, 
and the contact resistivity of the upper 𝜌𝜌𝑡𝑡𝑡𝑡  and lower 
surfaces 𝜌𝜌𝑏𝑏𝑡𝑡. In this work, FF is defined as the sum of the 
n-type leg and p-type leg areas divided by the ceramic 
layer area. And the n-type leg and the p-type leg have the 
same width. The area of the ceramic layer is fixed at 100 
mm2. The remaining parameters are used as constants, 
𝐻𝐻𝐼𝐼𝑡𝑡 = 0.5 𝑚𝑚𝑚𝑚,𝐻𝐻𝑡𝑡 = 0.5 𝑚𝑚𝑚𝑚 and the Cold-side 
temperature is fixed at 300K.  

 
Table.1 Parameters in Segemented TEG 

 
2.2 Dataset Generation and ANN Training 

Once all the parameters of the segmented TEG have 
been determined, the output power and efficiency of the 
TEG can be simulated using 3D finite element analysis 
software to generate the dataset for ANN training. The 
software used in this work is COMSOL Multiphysics. 5000 
sets of inputs including both geometrical parameter and 
operating condition list in Table 1 were randomly 
generated with uniform distribution. These inputs were 
then simulated in COMSOL to obtain the output power 
and efficiency. This dataset was split into groups of 4000, 
500, and 500 for training, validation, and the test, 
respectively. 

Fig.2a displays the simple structure of an ANN with 7 
input parameters, divided into geometrical parameters 
and operating conditions according to the classification 

in Table. 1. Hidden layers are 5-layer structures with 200 
neurons per layer. The two outputs of the ANN are the 
maximum output power density (𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚) and efficiency. 
Fig.2b is a display of the training loss (i.e., mean square 
error) as a function of the training epoch. The mean 
square error between the real results (simulated by 
COMSOL) and the ANN predicted results are used for 
backpropagation to update the weights and bias in each 
neuron. In general, the whole curve shows a downward 
trend, which means that ANN is slowly finding the best 
values as it back propagates. Around the 1900 epoch, the 
overall ANN has reached a relatively optimal state. All 
ANN training code is written in Python, using the Pytorch 
module. 

 
Fig. 2. (a) ANN structure and hyperparameters. (b) Training 
loss of ANN. 

 

2.3 Results and discussion 

Fig.3a shows the test results of the ANN. The horizontal 
and vertical coordinates are the 𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 of the COMSOL 
simulation and ANN predictions respectively. The red 
line is the y=x fit through all points. R2 is the goodness of 
fit, which measures the accuracy of the fit. Here we 
obtain an R2 value of 0.99944, indicating a good match 
with the ANN and COMSOL results and for the efficiency 
results, the goodness of fit is even better. To measure the 

Geometrical Parameter Value Range

Height of the TEG leg 1 – 10 mm

Filling Factor (FF) 0.05 – 0.95

High Temperature n-type TEG leg 
height ratio 

0.05 – 0.95

High Temperature p-type TEG leg 
height ratio 

0.05 – 0.95

Operation Condition Value Range

Hot-side temperature 400 – 700 K

Top side contact resistivity ) –

Bottom side contact resistivity 
)

–
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accuracy of the ANN, the concept of relative error rate is 
introduced here: 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = |𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝑁𝑁𝑁𝑁 −
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶|/𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 . On this basis, the 
accuracy can be expressed as 𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝐸𝐸𝑅𝑅𝐴𝐴𝐴𝐴 = 1 −
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸. Fig.3c shows the distribution of relative 
errors in the test data. From the figure over 60% of the 
data has a relative error of less than 1%, while only 1.6% 
of the data has a relative error rate of 5% or more. The 
average relative error in the overall test data is 0.011, 
meaning that ANN's accuracy rate is approximately 
98.9%. Same in the distribution of efficiency in Fig. 4d. 
More importantly, this highly accurate modeling can be 
achieved within milliseconds in a single test, which is 
over 10000 times quicker than the time required for 
COMSOL simulation (90 ± 30𝑅𝑅). These results suggest 
that ANNs can achieve accuracy close to that of COMSOL 

simulation, while significantly saving time and 
computational resources. 
   By using the accurate ANN STEG model, the effect of 
all parameters on the STEG can be investigated. As an 
example, we will demonstrate, in Fig. 4, the effect of the 
high-temperature material height ratio RNH under 
different hot-side temperatures with other parameters 
remains fixed. The operating condition chosen is 𝜌𝜌𝑏𝑏𝑏𝑏 
and 𝜌𝜌𝑡𝑡𝑏𝑏  of 10-8 Ω·m2. The 𝐻𝐻𝑇𝑇𝑇𝑇 , 𝐹𝐹𝐹𝐹  and 𝑅𝑅𝑃𝑃𝑁𝑁  values 
were fixed at 5 mm, 0.5, and 0.5, respectively. Fig 4b is 
the corresponding efficiency results. In Fig. 4, the lines 
are the data generated by the ANN and the triangles are 
the data from the COMSOL simulation. When the 
temperature difference is fixed, 𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚  firstly increases 
and then decreases with RNH, which would indicate that 
the segmented structure has a higher output power than 
a single material TEG at that conditions. When the 
temperature is fixed, increasing the ratio of high-
temperature material from start will cause more high-
temperature material to work in the higher temperature 
region, which will generate more voltage in comparison 
to the medium and low-temperature material, increasing 
power. As the ratio of high-temperature material 
increases further, more high-temperature material 
enters the low-temperature region, generating less 
voltage compared to the original medium to low-
temperature material, leading to a reduction in power.  

The blue dots in Fig. 4 represent the optimized ratio 
for different operating temperatures. The higher the 
temperature, the greater the RNH at which the peak of 
𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚  occurs. This can be explained by the fact that as 
the temperature increases, the distribution of high-
temperature regions over the STEG legs increase. In turn, 
the use of high-temperature materials in these high-

 
Fig. 4 (a)𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚  and (b)efficiency obtained from ANN (line) and COMSOL simulation (triangles) as a function of 𝑅𝑅𝑁𝑁𝑁𝑁 and 𝑇𝑇ℎ. 
The operating condition chosen is 𝜌𝜌𝑏𝑏𝑡𝑡  and 𝜌𝜌𝑡𝑡𝑡𝑡  of 10-8 Ω·m2. The 𝐻𝐻𝑇𝑇𝑇𝑇, 𝐹𝐹𝐹𝐹 and 𝑅𝑅𝑃𝑃𝑁𝑁 values were fixed at 5 mm, 0.5 and 0.5, 
respectively. Blue dots are the peak of 𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚  

 
Fig. 3. Test results of the ANN and the COMSOL (a) 𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 . 
(b) efficiency. (c) The distribution of test data relative error 
on (c) 𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚  and (d) effciency. 
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temperature regions generates more power than 
medium to low-temperature materials. Therefore, the 
ratio of high-temperature materials that show peaks 
increases as the temperature increases. This is very much 
in line with the common perception of STEG, and the fact 
that ANN can show these patterns without knowing any 
preconception reinforces the superiority of ANN 
modeling. 
 

3. CONCLUSIONS  
In conclusion, this work reports the forward 

modeling of segmented TEG using an artificial neural 
network. After training the overall ANN model 
demonstrates accuracy close to 99%, compared to the 
COMSOL simulation results under constant temperature 
difference. Also, several thousand times faster than 
COMSOL simulation is achieved through ANN, which 
means the computational efficiency is significantly 
improved. Compared to the other mathematical 
modeling, no prior knowledge is required in ANN 
modeling and can still ensure accuracy. In addition, ANN 
can consider more complex variables which normal 
mathematic models usually have to ignore. 

The development of such an ANN model that enables 
accurate and fast prediction of the complex relationships 
between the STEG parameters and power performance 
will further facilitate the STEG design optimization by 
coupling the model with optimization techniques (e.g., 
evolutionary optimization).  
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