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ABSTRACT 
Artificial neural network (ANN) models were 

developed to predict milk cooling, milk harvesting and 
water heating electricity consumption using data 
collected from 56 pasture-based Irish dairy farms. The 
methodology employed variable selection, outlier 
detection, hyper-parameter tuning and nested cross-
validation. The ANN models were developed to predict 
monthly electricity use, while monthly predicted values 
were also aggregated and assessed at farm- and 
catchment-levels. Model input variables were 
constrained to stock and milk production, infrastructural 
equipment and farm management details. The ANN 
algorithm predicted monthly electricity consumption for 
milk harvesting with an error of 22% (relative prediction 
error), milk cooling to within 24% and water heating to 
within 31%. Prediction errors reduced to 16%, 12% and 
9%, respectively when predicted values were aggregated 
at the farm-level. In addition, significant reductions in 
prediction errors were calculated when milk harvesting 
(0.8%), milk cooling (1.8%), and water heating (1.9%) 
predictions were aggregated at the catchment-level. This 
demonstrates the potential effectiveness of the 
developed ANN models as tools for macro-level 
simulations. 
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1. INTRODUCTION 
Animal agriculture is responsible for 14.5% of global, 

human induced greenhouse gas (GHG) emissions, of 
which 20% is due to cattle milk production [1]. With 
global milk production forecasted to increase by 22% 
between 2018 and 2027 [2], it is essential that the dairy 
sector addresses the significant challenges ahead related 
to minimizing GHG emissions across the entire 
production cycle. Although energy consumption is 

responsible for only 2% of global milk production related 
GHG emissions across the entire supply chain [1], 
significant financial savings may be made on-farm 
through the optimal sizing and operation of energy 
infrastructural equipment, while also providing 
advantaged to the electrical grid.  

Energy is consumed on dairy farms both directly 
through electricity and tractor fuel use, and indirectly 
through the production and delivery of fertilizers, 
machinery, and concentrate feed, etc. [3]. Electrical 
energy is responsible for 14% of total primary energy 
consumed on conventional dairy farms, mainly due to 
milk cooling (31%), milk harvesting (29%) and water 
heating (19%) [3].  

Machine-learning models have been developed to 
allow researchers gain a greater understanding of the 
various farm parameters affecting farm productivity [4], 
including on-farm electricity use. Multiple linear 
regression (MLR) models have been developed to predict 
total electricity consumption (kWh) [5,6], the output 
energy of milk (MJ Cow-1) [7] and diesel use (kg) [6]. In 
addition, MLR has been employed to estimate milk 
cooling [8,9], water heating, milk harvesting and air 
compressor electricity use [9]. More recently, machine-
learning algorithms have been employed to quantify 
non-linearities and interactions between input variables 
to increase prediction accuracy. Shine et al. [10] 
developed support vector machine, decision tree, 
random forest and artificial neural network (ANN) 
models to estimate on-farm electricity consumption 
(kWh). Concurrently, the ANN [11] and adaptive neural-
fuzzy inference system [7] algorithms have been 
employed to predict the output energy of milk (MJ Cow-

1) on dairy farms in Iran. However, no study to date has 
focused on applying machine-learning algorithms to 
predict milk cooling, milk harvesting and water heating 
electricity use. 
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The objectives of the work presented in this paper 
were to: 1) identify the farm variables that minimize 
prediction error when estimating milk cooling, milk 
harvesting and water heating electricity use. 2) Calculate 
the accuracy of the ANN algorithm when estimating 
monthly, farm-level and catchment-level milk cooling, 
milk harvesting and water heating electricity 
consumption. The methodology employed a range of 
data mining techniques including: variable selection 
methods to extract high predictive yielding variables, 
grid-search hyper-parameter tuning to improve the 
prediction performance of each ANN model, and 
stratified nested cross-validation to calculate the 
prediction performance. 

2. MATERIALS AND METHODS 

2.1 Data Collection 

Data were acquired via the automated recording of 
electricity consumption on 56 pasture-based dairy farms, 
located in the south of Ireland. Milk cooling, milk 
harvesting and water heating electricity consumption 
data were monitored between 1st Jan 2014 – 30th June 
2017. A once off survey was completed on each study 
farm in 2014 to identify equipment and managerial 
processes utilized on-farm. Milk yield data was also 
attained from each farm’s milk processor, and stock data 
was attained from the Irish Cattle Breeding Federation. 

2.2 Data pre-processing 

Table 1 List of dairy farm variables for model development 

Variable Category 
Milk 

Cooling 
Milk 

Harvesting 
Water 

Heating 

1. Month number ✓ ✓ ✓ 

2. No. lactating cows ✓ ✓ ✓ 

3. Total no. cows ✓ ✓ ✓ 

4. Milk production ✓ ✓ ✓ 

5. No. parlour units ✓ ✓ -- 

6. Milk cooling system ✓ -- -- 

7. Bulk tank volume ✓ -- -- 

8. Vacuum pump power -- ✓ -- 

9. Variable speed drive -- ✓ -- 

10. Freq. of hot wash -- -- ✓ 

11. Solar thermal system -- -- ✓ 

12. Water tank volume -- -- ✓ 

13. Water heating power -- -- ✓ 

14. Water heating fuel  -- -- ✓ 

In total, 14 variables were considered to predict milk 
cooling, milk harvesting and water heating electricity 
consumption, as shown in Table 1. These variables were 
related to stock and milk production, infrastructural 
equipment and farm management. The month number 
was a fixed input for ANN development to address the 
time series component of the model. The milk cooling 
category included: i) whether an ice bank of direct 
expansion bulk tank was used, ii) whether milk pre-
cooling was carried out using ground water, and iii) 
whether ice cold water was used to pre-cool milk. 
Similarly, four hot washing frequencies were used 
throughout study farms: 1) once a day, 2) every second 
day, 3) once a week, and 4) once a month. Lastly, the 
water heating fuel source category include either electric 
water heating or a mixture of electric and oil. 

Data were normalized to a mean value of zero and 
standard deviation of one. All variables then underwent 
a selection process before model development to reduce 
the number of possible dimensions and required 
computational resources and noise within the datasets. 
Backward and forward sequential variable selection with 
support vector machine and decision tree models were 
employed, as described in Shine et al. [10]. Outliers were 
detected and removed using the Density Based Spatial 
Clustering of Applications with Noise (DBSCAN) 
algorithm with a parameter calculation methodology 
described in Shine et al. [5]. 

2.3 ANN Development 

Three ANN models (multilayer perceptron) were 
developed to predict monthly milk cooling, milk 
harvesting and water heating electricity use. The 
Levenburg Marquardt algorithm with Bayesian 
regularization [12] was employed to iteratively update 
synapse weights to reduce the residual sum squared 
error of the prediction values until no improvement was 
achieved or once 250 iterations were carried out. 
Bayesian regularization minimizes a combination of the 
squared errors and synapse weights, and then selects the 
optimum combination to produce a network that 
generalizes well. 

To select the optimum number of neurons in the 
hidden layer, five hidden layer sizes were determined 
from the number of variable inputs, and assessed via 
grid-search hyper-parameter tuning. Where I is the 
number of input variables, the range of hidden layer sizes 
assessed was [I−2, I−1, I, I+1, I+2]. The tan-sigmoid 
activation function was selected due to previously being 
found to minimize prediction error for total electricity 
consumption on dairy farms [10].  
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2.4 Validation and Performance 

The prediction performance of each variable subset 
selected through each of the four sequential variable 
selection methods were calculated through a stratified 
nested cross-validation [10]. The nested cross-validation 
method utilized 10-fold cross validation in an outer loop 
and 9-fold cross-validation in an inner loop. The ANN 
models were developed using the outer loop training 
data selecting the number of hidden neurons that 
minimized relative prediction error (RPE) through 9-fold 
cross-validation. Model accuracy was then calculated on 
the remaining outer loop test fold, and process repeated 
until the prediction accuracy was calculated on each 10 
outer loop folds. Overall accuracy then equaled the mean 
across all 10 outer loop test folds. 

The ANN models were developed to predict monthly 
electricity consumption and predicted values were then 
aggregated (summed) and assessed at farm- and 
catchment-levels. Prediction biases were evaluated 
according to the mean percentage error (MPE (%)), with 
negative MPE values suggesting overprediction, and 
positive values suggesting underprediction. Absolute 
model precision was evaluated according to relative 
prediction error (RPE (%)), root mean squared error 
(RMSE (kWh)), and the concordance correlation 
coefficient (CCC), as described in Shine et al. [10]. 

3. RESULTS 

3.1 Monthly Prediction Accuracy 

Table 2 Monthly prediction accuracy of each ANN model 

Target V/S* RPE CCC RMSE 

Milk Harvesting BW - SVM 22% 0.89 93 kWh 

Milk Cooling BW - SVM 24% 0.94 153 kWh 

Water Heating FW - DT 31% 0.90 125 kWh 

*V/S = Variable selection method; BW - SVR = Backward 
variable selection with support vector machine; FW - DT = 
Forward variable selection with decision tree 

The ANN algorithm predicted monthly milk 
harvesting electricity use with an RPE of 22% (n = 1,452), 
milk cooling to within 24% (n = 1,514) and water heating 
to within 31% (n = 1,413), as shown in Table 2. The total 
number of dairy cows, milk yield (L), the number of parlor 
units and vacuum pump power (kW) offered the 
minimum prediction error of milk harvesting electricity 
use. Regarding milk cooling, the total number of dairy 
cows, milk yield (L), the number of parlor units, the type 
of milk cooling system used (type of bulk tank (ice bank 
or direct expansion), whether milk pre-cooling was 

carried out with or without ground water (Yes | No) or 
ice-cold water (Yes | No)), and the total bulk tank volume 
(L). Regarding water heating, the number of lactating 
cows, the total number of dairy cows, the frequency of 
hot washing (whether carried out once a day, every 
second day or once a week), whether a solar thermal 
system was utilized to heat hot water (Yes | No), total 
hot water tank volume (L) and water heating power 
(kW). 

3.2 Farm-level Prediction Accuracy 

Table 3 Aggregated farm-level prediction results 

Target RPE CCC MPE n 

Milk Harvesting 16% 0.96 -3.6% 53 

Milk Cooling 12% 0.98 0.5% 53 

Water Heating 9% 0.99 0.2% 50 

When monthly ANN model predictions were 
aggregated at the farm-level, milk harvesting RPE 
equaled 16%, milk cooling RPE equaled 12%, and water 
heating RPE values equaled 9% (Table 3). Thus, farm-
level RPE values reduced by 6%, 12% and 22% points, 
respectively, when compared to the monthly predictions 
(section 3.1). CCC values for milk harvesting (0.96), milk 
cooling (0.98) and water heating (0.99) were all greater 
than those calculated at the monthly resolution. This 
suggests a significant improvement between observed 
and predicted values when predicting at the farm-level. 
In addition, MPE values of 0.5% for milk cooling, 0.2% for 
water heating, and -3.6% for milk harvesting further 
suggest the potential for reduced prediction errors when 
predicting over a large number of farms. 

3.3 Catchment-level Prediction Accuracy 

Table 4 Aggregated catchment-level prediction results 

Target Actual (kWh) Predicted (kWh) Error 

Milk Harvesting 599,776 594,717 0.8% 

Milk Cooling 975,873 958,583 1.8% 

Water Heating 561,862 551,310 1.9% 

A significant reduction in prediction error was 
observed when monthly ANN model prediction values 
were aggregated for the entire catchment of study 
farms. Catchment-level milk harvesting related 
electricity consumption was estimated with an error of 
0.8% (53 study farms), milk cooling electricity 
consumption with an error of 1.8% (n = 53) and water 
heating with an error of 1.9% (n = 50), as shown in Table 
4.  
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4. DISCUSSION 
When predicting at the monthly resolution all three 

ANN models resulted in RPE values greater than 20% 
suggesting poor prediction capability [13]. However, the 
milk cooling and water heating ANN models resulted in 
CCC values greater than 0.90 suggesting excellent 
strength of agreement, while the ANN model predicting 
milk harvesting electricity use had a CCC value of 0.89 
suggesting a substantial strength of agreement [14]. This 
suggested that the ANN models are responsive to 
fluctuations in monthly electricity use but contain some 
absolute prediction error. When predictions were 
aggregated at farm-level, clear improvements in RPE and 
CCC values (compared to monthly predictions) were 
evident, as shown in Table 2 suggesting improved 
predictions capabilities. This reduced error may be due 
to a balancing effect between monthly underprediction 
and overprediction values throughout the year, coupled 
with the reduced number of datapoints used to calculate 
farm-level accuracy metrics (50 – 53 study farms). 

Predicting water heating electricity use resulted in 
the largest prediction error (RPE) when predicting at a 
monthly resolution. This may have been due to water 
heating being less correlated with the milk production 
process compared to milk cooling and milk harvesting as 
water heating was carried out irrespective of milk 
production. As such, water heating electricity use had to 
be predicted on months where no milking took place, 
whereas milk cooling and milk harvesting electricity use 
was assumed to equal zero and these months were 
excluded. It is also likely that water heating was carried 
out more frequently that the frequency required for hot 
washing (as per input variable 10, Table 1), as hot water 
was required for other miscellaneous use throughout the 
farm. However, predicting water heating electricity use 
at the farm-level resulted in the smallest RPE, again 
suggesting a balancing effect between over- and 
underprediction values 

5. CONCLUSIONS 
Some evidence suggested an improvement in 

prediction accuracy when predicting at the farm-level 
compared to the monthly prediction resolution. 
However, a considerable improvement in prediction 
accuracy was calculated when predicting at the 
catchment-level with errors of 0.8%, 1.8% and 1.9% for 
milk harvesting, milk cooling and water heating, 
respectively. These results demonstrate the potential 
effectiveness of the ANN models as macro-level 
simulation tools for dairy farm electricity consumption.  
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