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ABSTRACT 
With the wide adoption of renewable energy 

resources in the power grid, energy storage systems 
have drawn significant attention to improving the 
stability and efficiency of the power grid. Among various 
storage systems, Liquid Air Energy Storage (LAES) has a 
promising future due to its intrinsic advantages. 
However, the modeling of a LAES is a complex issue, and 
existing approaches based on principles have a heavy 
computational load. To facilitate modeling of LAES, this 
study focused on data-driven modeling with machine 
learning and conducted a comparative analysis for 
several popular methods, including K-Nearest Neighbor 
(KNN), Support Vector Machine (SVM), Artificial Neural 
Network (ANN), and Deep Neural Networks (DNN). With 
LAES as the study case, data-driven models were built 
based on the data generated by its first-principal model 
developed with the Aspen HYSYS simulation software. 
For the selected machine learning methods, the 
modeling accuracy and running time were compared, 
showing that the DNN achieved the best performance 
compared to the others. 
 
Keywords: Liquid Air Energy Storage, Machine Learning, 
Data-driven modeling, Comparative Analysis.  

1. INTRODUCTION 
In the power grid, the demand for electrical energy 

suffers from significant changes. To meet the dynamic 
demands of electrical energy on the user side, the 
conventional approach mainly adjusts the amount of 
electricity generation such that the generation and 
energy use are balanced. However, the adoption of 
renewable energy sources, such as wind and solar 

energy, challenges the conventional method for power 
grid management. Instead, energy storage systems 
become one of the key approaches to balance the 
electricity supply and demand in the power grid. At 
present, large-scale energy storage technologies mainly 
include battery energy storage, pumped water energy 
storage, compressed air energy storage, etc. [1].  

Battery energy storage systems adopt various 
batteries (like lithium, lead-acid, or iron-chromium 
batteries) as energy carriers to exchange electrical 
energy with the grid. The battery energy storage system 
has flexible installation and high conversion efficiency, 
avoiding energy waste. There still lacks a systematic 
discussion on the construction plan and flexible 
operation of battery energy storage systems [2]-[4]. 
Battery systems have the advantages of large capacity, 
high efficiency, high charge and discharge rate, and long 
cycle life [5]. However, battery storage systems have 
higher production costs, limiting their large-scale 
application to some extent. Contrarily, pumped water 
energy storage systems are the most cost-effective 
solutions for large-scale energy storage [6]. Still, they can 
only be used when the surrounding environment meets 
the requirements of energy storage power stations. 
Meanwhile, compressed air energy storage uses surplus 
electricity when the grid load is low to compress air, and 
the air is sealed at high pressure in deep underground 
caves, such as newly built gas storage wells [7], [8]. 
Several successful large-scale demonstrations of the 
aforementioned technologies include pumped water 
energy storage in South Africa and the US, the US 
isothermal compressed air energy storage system, etc. 
[9]. 
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In addition to the mentioned energy storage 
technologies, Liquid Air Energy Storage (LAES) appears as 
an innovative and promising technology for large-scale 
applications in the power grid. It uses a series of 
compression, cooling, and expansion stages in the 
Claude refrigeration cycle to liquefy air. The liquid air is 
stored efficiently in low-pressure, insulated tanks with 
minimal wastage. Current standalone systems with 
internal heat integration can achieve 50% and 60% 
round-trip efficiencies. It is accepted that external 
supplies of waste heat and cold could increase this 
substantially to around 70% [10], [11]. The advantages of 
LAES can be summarized as low initial investment, high 
energy storage efficiency, flexible adjustment, long 
operating life, easy maintenance, and is independent of 
geographic conditions [12]. In [13], a LAES system has 
been presented in integration with a nuclear power 
plant. 

Despite the advantages of LAES systems, their 
modeling and real-time operation based on physical 
principles can be relatively complex and computationally 
expensive. To tackle this issue, this study investigated 
data-driven modeling for LAES systems with several most 
popular machine learning approaches, including K-
Nearest Neighbor (KNN), Support Vector Machine (SVM), 
Artificial Neural Network (ANN), and Deep Neural 
Networks (DNN). This article uses the methods 
mentioned above to simulate the LAES process, 
compares the results of each method, and selects the 
method with the minor error and relatively best result to 
replace LAES. The data used in this study are generated 
from Aspen HYSYS simulation software based on the 
first-principle model developed for a LAES system. The 
numerical results demonstrate the advantages of DNN 
compared to the other approaches according to the 
comparative effects on modeling accuracy and running 
time. 

2. LIQUID AIR ENERGY STORAGE SYSTEM  

The energy storage process of Liquid Air simulated by 
the software is shown in Fig. 1, which can be divided into 
three parts: compression part, heat exchange part, and 
expansion part. Air from the environment is compressed 
in stages and then expanded to ambient pressure and 
sub-ambient temperature to generate the necessary 
refrigeration effect to liquefy air. Liquid air is then stored 
in cryogenic tanks at nearly ambient pressure. During 
discharge, pressurized liquid air is regasified and 
expanded through turbomachines to generate electricity 
and recover stored energy. Both heat of compression 
and cold thermal energy from regasification can be 

stored and recycled to improve the efficiency of the 
overall system [14]. 

1) Compression part: The compression part in Fig. 1 
uses electric energy to drive compressors. First, the air in 
the environment is purified and compressed before the 
air is passed into heat exchangers in the heat exchanger 
part. A gas stream after the separator in the heat 
exchanger part will be recycled to the compression part. 

2) Heat transfer and storage part: The heat transfer 
and storage part in Fig. 1 shows that the pre-cooled air 
from the compression part is then expanded in a 
cryogenic expander, resulting in a gas-liquid mixture 
which is divided into a liquid and a gas stream. The liquid 
air is stored in cryogenic tanks. The liquid stream is 
pumped and preheated in evaporators. In this part, the 
cold energy from liquid air is used to cool air from the 
compression part. 

3) Expansion part: The high-pressure air from the heat 
transfer part is sent to expanders with reheaters. In this 
way, the stored energy is converted to electricity. Using 
low-temperature liquid air as an energy storage medium 
can significantly increase the energy storage density.  

As a new large-scale energy storage technology, LAES 
provides an attractive solution for the efficient and safe 
use of clean energy. It has the advantages of long life, low 
pollution, and good compatibility with geological 
conditions. 

Although the LAES is an efficient energy storage 
solution, the main issue is that its modeling relies on 
process-based simulation software, such as Aspen 
HYSYS, leading to complex models and long running time. 
This causes barriers to the optimization process. For this 
purpose, the data-driven model is an efficient alternative 
with specific advantages over process-based simulation. 

3. MACHINE-LEARNING APPROACHES 

3.1 K-Nearest Neighbor 

The KNN does not require a time-consuming learning 
process while ensuring moderately good performance 
[15]. KNN has been widely used in various fields, both for 
classification and regression. As a classic non-parametric 
regression model, the KNN algorithm only requires 
sufficient representative data to model the relationship 
between input and output. The key idea is to find out the 
𝑘 nearest neighbors of a sample and assign the average 
value of some attributes of these neighbors to the 
sample to get the value of the corresponding attribute. 
The KNN theory is mature, and the idea is simple and 
easy to use. However, as the variables gradually increase, 
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the mean value of the variable corresponding to the 𝑘 
nearest observations may deviate from the actual value 
of the dependent variable exponentially. When there are 
many variables, the effect will gradually decrease. 
Another drawback of KNN is that the calculation speed is 
slow. The longer the historical data used, the slower the 
calculation speed becomes, although the accuracy is 
higher. Overall, KNN is an excellent method that takes 
advantage of the similarity of historical data. 

3.2 Support Vector Machine 

Support Vector Machine (SVM) is an important 
branch of machine learning. The essential idea of SVM is 
to find a hyperplane to separate samples of different 
categories. The SVM only uses a part of the support 
vectors to make hyperplane decisions without relying on 
all data. There are many kernel functions available, 
which can be very flexible in solving various nonlinear 
classification regression problems. The SVM method has 
been used in multiple fields, such as time series 
forecasting and classification. However, when the data 
set is huge, it is time-consuming to map the kernel 
functions of SVM. Assuming a data set 𝐷 =
{(𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3), . . . , (𝑥𝑚, 𝑦𝑚)}, 𝑦𝑖 ∈ 𝑅 , the 
SVM approach can be expressed as: 

𝑚𝑖𝑛
𝜔,𝑏

1

2
||𝜔||2 + 𝐶 ∑ [𝑓(𝑥𝑖) − 𝑦𝑖]

𝑚
𝑖=1       (1a) 

𝐼𝜀 = {
0, |𝑓(𝑥) − 𝑦| ≤ 𝜀
|𝑓(𝑥) − 𝑦| − 𝜀

           (1b) 

𝑓(𝑥) = 𝜔𝑇𝑥 + 𝑏              (1c) 

where 𝑏 is the bias vector, ω indicates the weight, 
𝐶  represents the regularization constant, 𝜀  is the 
deviation, and 𝑓(𝑥) is the expected regression model. 

3.3 Artificial Neural Network 

Artificial neural network (ANN) is one of the most 
widely used machine learning methods and achieves 
excellent performance for huge data set [16]. A neural 
network is composed of many network units (or 
neurons) connected. ANN consists of three layers, 
namely input layer, hidden layer, and output layer, with 
each layer formed by a number of neurons. The modeling 
process of ANN is determined by the input and output 
characteristics of neurons and their connection mode. In 
ANN, each neuron represents a specific output function, 
called the activation function. Each connection between 
two nodes represents a weighted value for the signal 
passing through the connection, equivalent to the 
memory of an ANN model. The output of the network 
varies according to the connection method of the 
network, the weight value, and the activation function. 
The network itself is usually an approximation of a 
certain algorithm, function, or a logical strategy. 

3.4 Deep Neural Networks 

Deep neural network (DNN) is an improvement over 
ANN with more complex architecture and stronger 
learning ability. The main difference between DNN over 
ANN lies in that it has a deeper network depth and trains 
the network through convolution. Therefore, DNN has 
stronger non-linear learning and fitting capabilities [17]. 

For data-driven modeling with DNN, a loss function 
is required to measure the loss between the output of 
DNN model and the training sample, as expressed in Eq. 
(2). 

𝐽(𝑊, 𝑏, 𝑥, 𝑦) =
1

2
‖𝑎𝐿 − 𝑦‖2

2         (2) 

 
Fig. 1. Schematic diagram of Liquid Air Energy Storage process 
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The modeling process with DNN equals minimizing 
the selected loss function. For DNN, various optimization 
methods have been proposed, among which the Adam 
optimization method has become the most popular one 
[18]. Compared with the traditional gradient descent 
method, the Adam optimization method dynamically 
adjusts the learning rate during the learning process and 
avoids the saddle point problem, difficult to be solved by 
traditional gradient descent methods [19]. 

For the loss function 𝐽(𝜃), the general form of the 
Adam optimization method is expressed in Eqs. (3). 

𝑐𝑔𝑡 = 𝛻𝜃𝐽(𝜃𝑡−1)               (3a) 
𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡      (3b) 
𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡

2      (3c) 
𝑚𝑡

′ = 𝑚𝑡/(1 − 𝛽1
𝑡)           (3d) 

𝑣𝑡
′ = 𝑣𝑡/(1 − 𝛽2

𝑡)            (3e) 

𝜃𝑡 = 𝜃𝑡−1 −
𝜂

√𝑣𝑡
′+𝜖

𝑚𝑡
′           (3f) 

where 𝜂  is the learning rate, 𝑔  refers to the 
gradient of the current loss function 𝐽(𝜃), 𝑚  and 𝑣 
are the mean value of the past gradient and the mean 
value of the gradient square, respectively. 𝛽1  and 𝛽2 
are the set attenuation coefficients, 𝜃 is the network 
that needs to be updated parameter, 𝑡 is the number of 
rounds, and 𝜖  is to prevent the denominator from 
beginning 0. 

4. EXPERIMENTAL DESIGN AND ANALYSIS 
This section introduces the settings of experiments 

and analysis of the experimental results. The machine 
learning methods used in this article were used to model 
each block of LAES respectively. The outputs of the 
compression and heat exchange blocks were used as the 
inputs of the expansion part. 

4.1 Setting of Experiments 

The data set used in this article is generated from the 
Aspen Hysys simulation software. The LAES system 
shown in Fig. 1 is used as the study case, which has been 
modeled in Aspen HYSYS, to generate data. For the given 
LAES system, the mass flow 1 is set to 2000 kg/h, and the 
mass flow 17 is randomly generated in the range of 0 to 
500 kg/h with the temperature set to 20 °C. The outputs 
are obtained through Aspen HYSYS simulation software. 
After generating the data set, data cleaning has been 
conducted to filter out all the infeasible items. For the 
feasible items, 90% were randomly selected as the 
training set, and the remained items were used to form 
the test set. With the generated data set, the KNN, SVM, 
ANN, and DNN methods are firstly used for data-driven 
modeling based on the training set, after which the 

generated models are verified with the test set. In 
addition, the results based on the test set is compared 
for various methods on the modeling accuracy and 
running time. 

The settings for machine learning approaches are 
summarized as the following: 

1) For KNN, the value 𝑘 is set to 5, indicating that 
five nearest neighbors are used in the modeling process. 
This achieved the best performance compared to the 
values up to 10 for our study case. 

2) For SVM, the RBF (Radial Basis Function) is 
adopted as the kernel function, which is commonly used 
in nonlinear modeling. 

3) For ANN, the number of neurons is set to 8 for the 
middle layer, which is the value with the best 
performance compared to the others up to 16. 

4) For DNN, the ReLU function is selected as the 
neuron activation function, the Adam optimization is 
adopted for the training process, the objective loss 
function is the mean square error function, and a 
variable learning rate in the range of 0 to 0.2 is adopted. 
The number of hidden layers is set to 3 with each layer 
having 128 neurons and the maximal iteration number is 
set to 200, which in our case obtains the best 
performance. 

4.2 Experimental results 

The modeling error of the power rate for the 
compression part is given in Fig. 2. It can be found that 
KNN achieved the best performance for the compressors 
E1 to E3, while the modeling performance of DNN was 
significantly improved for the compressors E4 and E5. 
Since the outputs of E4 and E5 were impacted by the 
outputs of E1 to E3, the modeling problems had 
increased complexity and non-linearity, which could be 
solved better by DNN as described in Section III. 

 
Fig. 2. Modeling error of the power rate in the compressed 

part. 
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Figure 3 shows the modeling error of the power rate 
for the heat transfer and storage part. It can be found 
that KNN had the least modeling error for P0. On the 
other hand, ANN achieved the best performance for K0 
compared to the others but was not performing well for 
P0. Further analysis is required to categorize the 
underlining reasons for the differences. 

The modeling error of the power rate for the 
expansion part is shown in Fig. 4. For K1 to K4, the DNN 
approach outperformed the other three machine 
learning schemes. However, the KNN method did not 
perform as well as in the compression part. It is 
necessary to analyze the causes of this significant 
difference. 

With the power obtained using various machine 
learning methods, the round-trip efficiency (RTE) of the 
entire LAES system is calculated using Eq. (4), in which 
𝑃𝑥 indicates the power rate of device 𝑥. The results of 
RTE are given in Fig. 5. It suggests that the power rate 
obtained with the DNN approach had the slightest error, 
much lower than the other three. Meanwhile, it is also 
worth noting that all the schemes used in this study can 
model the RTE accurately with an error of less than 5%. 

𝑅𝑇𝐸 =
𝑃𝐸1+𝑃𝐸2+𝑃𝐸3+𝑃𝐸4+𝑃𝐸5−𝑃𝐾0

𝑃𝐾1+𝑃𝐾2+𝑃𝐾3+𝑃𝐾4−𝑃𝑃0
        (4) 

In the end, the overall running time on the test set 
are compared as shown in Fig. 6. Among these four 
schemes, the SVM had the longest running time greater 
than 400 seconds, followed by KNN, DNN, and ANN in 
sequence. It is worth noting that running time between 
ANN and DNN is negligible while the DNN archived better 
modeling accuracy. 

5. CONCLUSION 

The wide adoption of renewable energy in the smart 
grid demands large-scale storage systems to balance the 
supply-demand relationship. LAES, as a new energy 
storage technology, has unique advantages for this 
purpose. In this study, we have conducted a comparative 
analysis for four commonly used machine learning 
approaches, including KNN, SVM, ANN, and DNN, to build 
data-driven models for a given LAES system. Overall, we 
believe DNN outperforms the other three with the 
integral consideration of the modeling error of power 
rate, RTE, and running time on the test set. 
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