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ABSTRACT 

 Combustion process can become more energy 

efficient and environment friendly if used with 

appropriate fuel additive. Discovery of fuel additive can 

be accelerated by applying hybrid approach of using of 

chemical kinetics and Machine Learning (ML). In this 

work we present a framework that takes the robustness 

of Machine Learning and accuracy of chemical kinetics to 

predict the effect of fuel additive on autoignition 

process. We present a case of making predictions for 

Ignition Delay Time (IDT) of biofuel n-butanol (C4H9OH) 

with several fuel additives. The proposed framework was 

able to predict IDT of autoignition with high accuracy 

when used with unseen additives. This framework 

highlights the potential of ML to exploit chemical 

mechanisms in exploring and developing the fuel 

additives to obtain the desirable autoignition 

characteristics. 
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1. INTRODUCTION 

In the wake of fast changing global climate scenario, 

a lot of emphasis has been laid on reducing hazardous 

emissions and using renewable energy solutions. 

Specially during the last few years, climate change has 

become a global challenge and many regions have 

already started experiencing its impact. Fortunately, 

during the same time period, ML algorithms have come 

of age and helping researchers in tackling variety of 

challenges. Also, for climate change, ML is proving to be 

very helpful in suggesting ways to reduce emissions [1]. 

For conventional fuels - which have been found to 

contribute significantly to increase emissions - ML has 

high potential to find ways to reduce emissions. For 

example, Li et al. used ML approach to explore organic 

waste to find equivalent renewable energy source of 

fossil fuels [2]. Badra et al. used combined approach of 

Computational Fluid Dynamics and ML to optimize 

combustion process [3].  Despite all these applications of 

ML to minimize effects of climate change and making 

combustion process more environment friendly, it can 

be noted that not much attention has been devoted to 

find fuel additives which can provide desirable emissions 

related characteristics of burning fuels. 

In this work, we present a framework that uses ML 

algorithm and chemical kinetics to discover fuel 

additives. First we present the methodology that was 

employed to obtain data and train the model, and then 

we present results for fuel additives obtained using the 

framework.  

2. METHODOLOGY 

As an application of the framework we present a 

case of finding IDT for autoignition of n-butanol. The 

approach of exploring new additives using this 

framework consist of three main steps: 

 First step consists of obtaining results of IDT for n-

butanol using experimentally validated chemical kinetics 

mechanism [4] which consists of 6 elements (C, H, N, O, 

Ar and He), 243 species and 2892 unidirectional 

reactions. Adiabatic autoignition of butanol at constant-

volume was considered for simulations. Apart from n-

butanol, total of 50 stable species were found in the 
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mechanism which were used as additive in volumetric 

ratios of 0.0 (pure n-butanol), 0.01, 0.1, 0.2, 0.4, 0.6 and 

0.8. IDT were obtained by running separate simulations 

for all these additives. For each additive, above 

mentioned volumetric ratios were considered in 

combination of different input conditions of 

temperature, pressure and stoichiometric ratios. Details 

of these input parameters are given in Table 1.  

It should be noted that all these combinations of 

initial conditions do not necessarily lead to ignition, 

therefore those simulations that did not result in ignition 

were omitted from the data such that total number of 

IDT data points obtained in this work count to 11,732. 

Second step comprises of finding the features of all 

50 additives used in step 1 to characterize the fuel 

additive. In this work, we divided features into five 

categories: (i) Chemical (3D atom count, 3D anion-count 

etc.), (ii) Physical (Total Polar Surface Area (TPSA), 

volume of molecule, XlogP etc.), (iii) Compositional (no. 

of C atoms, molecular weight etc.) and (iv) Structural 

(bag of bonds such as no. of O-O bonds, number of C=C 

bonds etc.) and (v) Thermodynamic properties 

(coefficients of polynomials used to represent 

thermodynamic data used in NASA chemical equilibrium 

code [5] etc.). All these features sum up to 46. Figure 1 

shows additives plotted using Multi-Dimensional Scaling 

(MDS) of all features such that similar additives cluster 

together. For example, butane and iso-butane have 

many features in common, hence they share lose 

proximity.   

Figure 2 shows distribution of IDT obtained in step 1 

when plotted against features obtained in step 2. 

Although in this figure, IDT is plotted against only six 

features, yet it can be seen that features of fuel additives 

relate to IDT with clear patterns. Third step is to exploit 

such patterns of additive features with IDT using ML. 

Deep Neural Network (DNN) were employed in this work 

to fit the IDT with additives features and initial 

conditions. First a DNN model was generated with full 

 

Fig. 1. Clusters of fuel additives presented in non-dimensioonal space with respect to their features. Blue circles indicate spatial position 

while orange triangles denote centroid of  clusters.    

 

Input Value 

Temperature (K) 1100, 1350, 1600, 1800 

Pressure (atm) 1,4,8 

Equivalence Ratios 0.6, 1.0, 1.8 

Number of Additives 50 

Additives Mixing 

Ratios (vol.) 

0.0, 0.01, 0.1, 0.2, 0.4, 

0.6, 0.8 

Table. 1. Range of parameters used to generate data 

set 
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data of all 50 additives such that 80% of data was used to 

train the model while 20% data was used for testing 

purpose. This model was tested to predict the IDT with 

the different initial conditions of additives for which 

model was trained. 

 

Once it was established that model can predict the 

IDT with additives which were part of DNN training, the 

study was extended to predict the IDT for additives which 

were not trained in the network so that the capability of 

this framework to predict the effect of new additives can 

be assessed. To achieve this objective, another DNN 

model was trained with only 48 additives and results 

were tested for two additives which were not part of new 

trained model.  

In the next sections, first the results of trained model 

for 50 species are presented, followed by the results of 

DNN model trained on 48 additives to predict IDT for two 

unseen additives. Here ‘unseen’ is referred to the 

additives which were not part of DNN trained on 48 

additives.  

3. RESULTS  

This section is divided into two parts. In the first part 

results of the multi-layer DNN are presented where 

model was trained and tested for 50 additives. The 

second part relates to the DNN model which was trained 

for 48 additives and was tested for two unseen additives. 

3.1 Evaluation for all 50 additives 

Figure 3 shows the comparison between true values 

of IDT – which were obtained from autoignition 

simulations - with IDT obtained from DNN model trained 

on 50 species. This figure shows the predictions against 

randomly selected test data points which are 20% of all 

the available data for 50 species.   

Overall R2 score for the test data was 0.99. It can be 

seen that most of the IDT values are below 0.10 s and less 

than 10 values are above 0.10 s which have relatively 

high error. This distribution of error can also be seen in 

Figure 4. This distribution is reasonable because most of 

the data used for training has IDTs below 0.10 s which 

leads to high accuracy for region below 0.10 s.  

   

   

 

Fig. 2. Scatter plots of IDT with few features of fuel additives.    

 

Fig. 3. Comparison of predicted vs true values of IDT for 

test data using the model trained on  50 additives. 
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3.2 Evaluations for unseen additives 

To test the framework for unseen additives, data 

points for two additives were completely omitted from 

the training data and a new DNN was trained on 48 

additives. The two unseen additives were ethane (C2H6) 

and methyl-vinyl-ketone (C2H3COCH3). It can be seen 

from Figure 1 that C2H3COCH3 has features which are 

similar to several other close fuel additives such as ethyl 

ketene and 2-butenal. This shows that although 

C2H3COCH3 is not included in the training data, however 

training data contains fuel additives which have similar 

features. Unlike C2H3COCH3, C2H6 does not share close 

proximity with other fuel additives. This indicates that 

training data does not contain fuel additives which have 

as similar features to C2H6 as C2H3COCH3. Using this 

selection of additives will enable to assess the capability 

of model to predict IDT for unseen additives; irrespective 

of similarity in features with training data. 

Figure 5 shows that result of IDT predictions against 

true values for C2H6 and C2H3COCH3. It can be seen that 

predicted values are close to true IDT values. Similar to 

Figure 3, most of the data points locate below 0.004 s. 

Although the points are more dispersed as compared to 

DNN trained on 50 species, however R2 score is still 0.97 

which indicates high accuracy. So, the trained model on 

48 additives is found to successfully predict IDT for the 

unseen additives.        

3.3 Conclusions 

In this work, a framework to predict autoignition 

characteristics -both for seen and unseen additives - is 

presented. The framework combines the accuracy of 

experimentally validated chemical mechanism and 

robustness of ML to predict autoignition characteristics. 

An example of renewable fuel n-butanol is presented to 

predict IDT for trained and untrained fuel additives. It 

was shown that the framework was able to capture the 

chemical kinetics to predict IDT for the additives included 

in the chemical mechanism. Moreover, framework was 

also successfully able to predict IDT for species which 

were not part of DNN trained model. As shown using the 

case of unseen additives, this work also highlights the 

applicability of this framework to study fuel additives 

which are not part of chemical kinetic mechanism, thus 

opening a new whole new domain to explore and 

discover new fuel additives to achieve desired 

autoignition characteristics. In summary, the framework 

can be used to: 

• Study the effect of new fuel additives; 

irrespective of their presence in chemical 

kinetics mechanism.  

• Predict the effect of new additives on 

emission such as NOx, CO, CO2, CH2O etc. 

• Predict maximum heat generation during 

autoignition process. 

• Predict adiabatic flame temperature 

during autoignition process.  

• Predict flame-type using new additive. 

 

 

Fig. 5. Comparison of predicted vs true values of IDT for 

unseen additives using model trained on  48 additives. 

Top and right plots show distribution of data points.   

Fig. 4. Error distribution for predictions of test data using 

model trained on 50 additives. 
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