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ABSTRACT 
 The operation of microgrids (MGs) has garnered 

much attention in recent years due to their potential for 
leveraging renewable and non-renewable energy 
sources in a well-integrated system. One MG 
configuration which has not been extensively studied is 
the islanded vehicle-borne MG (VBMG). Optimizing the 
operation of any MG is important to ensure power 
security, resilience, and cost. The main factor considered 
in this paper is an operational condition in which 
additional fuel supply cannot reach an islanded VBMG. 
This paper discusses the optimal operation a VBMG while 
maximizing the amount of time given finite fuel 
constraints. The result can be key to ensuring successful 
power supply for critical tasks in applications such as 
disaster rescue and recovery, mobile medical services, 
and military applications. 

 
Keywords: mobile microgrid, optimal operation, vehicle-
borne microgrid 

1. INTRODUCTION 
Microgrids (MGs) are inherently versatile, which 

allows them to be used in many applications. MGs are 
powered by micro-sources, which could be comprised of 
renewable sources such as wind turbines and solar 
panels, or non-renewables such as diesel generators and 
storge systems such as batteries, to collectively meet a 
system load. Many systems have been considered for 
loads including EV charging stations [1], hospitals [2], and 
forward operating bases (FOBs) for military applications 
[3]. [1] and [2] consider stationary, grid-connected 
architectures, while [3] considers a stationary, islanded 
architecture for the MG. Although [1] includes some 
extensive parameters to calculate load, EV charging 
applications may not be useful when considering limited 

fuel resources. Meanwhile, [2] takes a data-driven 
approach, much of it used to design the MG, which is not 
the focus here. In fact, this paper will consider a mobile 
vehicle-borne microgrid (VBMG) with envisaged 
applications in the power supply of disaster rescue and 
recovery, mobile medical services, railway repair, remote 
construction, etc. The design optimization of such an MG 
structure has also been discussed in [4]. Such a mobile 
MG is often operated in islanded mode, similar to [3], 
due to the requirements of these rescue or mobile 
missions. Moreover, stationary architectures typically 
consider the micro-sources to be housed inside buildings 
or tents [1]-[3], while the mobile VBMG considered here 
houses the micro-sources in a container which can be 
towed and transported.  

 Some papers focus on optimizing MG operation in 
terms of cost [5]. In [5], this is accomplished by 
considering the costs of energy production, start-up and 
shut-down decisions, and earnings from selling power to 
consumers which is acquired from the utility grid. Then, 
these costs are combined to either maximize profit or 
minimize loss. Other papers focus on optimizing in terms 
of fuel consumption. An example of this can be seen in 
[6], where the fuel consumption of diesel generators is 
minimized while also minimizing the number of 
supercapacitors used, thus making the problem multi-
objective. Similarly, [3] aims to optimize the operation of 
an islanded military MG by minimizing fuel consumption. 
Although in [3], this is done in part by optimally sizing and 
managing the BESS. However, an operational scenario 
which has not been considered in literature is how to 
maximize the power supply time duration for critical 
loads when additional fuel supply is not available and the 
fuel storage within the microgrid is limited. This could be 
prevalent for urgent scenarios such as disaster rescue 
and recovery, where critical loads need to be met as long 
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as possible. This paper will use a VBMG architecture 
presented in Section 2 and mixed-integer nonlinear 
programming (MINLP) to optimize the operation of the 
VBMG for this scenario. 

2.  VBMG ARCHITECTURE 
The physical description of this architecture can be 

explained as follows. In this VBMG, the micro-sources are 
housed in a container, or mounted on the exterior in the 
case of the PV, which is towed by a truck. This is what 
allows the VBMG to operate while stationary or mobile. 
The loads will consist of anything critical for operation. 
For example, in the case of a disaster rescue from a flood, 
this could include pumps or lighting systems. Pumps 
must be powered to evacuate any flood water from 
buildings or low elevation areas. Lighting systems are 
critical to workers while operating in dark places which 
have lost power. Fig. 1 shows this VBMG architecture. 
 

 
Fig. 1: VBMG Architecture  

3. MG MODEL 

3.1 Micro-sources 
There are three components, or micro-sources, 

which are used in the VBMG. First, the DG is used due to 
its reliability and its power output capability relative to 
size and cost compared to renewable sources and 
storage components. Next, the PV was chosen due to its 
negligible operational cost and the fact that it takes up 
no space inside the container. The PV is mounted to the 
exterior of the container, which means it can be used 
while the VBMG is mobile, and it does not take up any 
interior space in the container. A BESS is also chosen 
because energy storage is critical since it can supply 
power from stored energy in the case that other 
components are having reliability issues. Additionally, 
energy storage can help with demand smoothing in the 
case there is a large fluctuation in load.  

First, we discuss the system constraints on the DG. In 
this model, the ON/OFF status of the DG, 𝑢𝐷𝐺 , is 
considered at each time, 𝑡, as shown in Eqn. (1). The 
power limits of the DG are given by Eqn. (2), where the 
output power at each time, 𝑃𝐷𝐺(𝑡) , must be greater 

than or equal to the minimum power output, 𝑃𝐷𝐺
𝑚𝑖𝑛, and 

less than or equal to the maximum power output, 𝑃𝐷𝐺
𝑚𝑎𝑥. 

Additionally, the fluctuation in power output from one 
time step to the next is constrained to maintain DG 
resiliency. This is represented by Eqns. (3) through (5), 

where 𝑃𝐷𝐺
𝑚𝑖𝑛(𝑡) is the minimum power output at each 

time, 𝛽0  is the maximum downward fluctuation, 
𝑃𝐷𝐺

𝑚𝑎𝑥(𝑡) is the maximum power output at each time, 
and 𝛽1 is the maximum upward fluctuation. The DG fuel 
consumption at each time, 𝐹𝐶𝐷𝐺(𝑡), is calculated using 
Eqn. (6) via quadratic approximation where 𝛼0, 𝛼1, and 
𝛼2  are consumption coefficients. The DG fuel cost at 
each time, 𝐶𝐷𝐺(𝑡), is found by multiplying the fuel cost, 
𝐶𝑓𝑢𝑒𝑙, with the fuel consumption at each time as seen in 

Eqn. (7). Finally, due to the operational scenario 
considered in this problem, the fuel supply, 𝐹𝑆 , is 
limited. The total fuel consumption, then, must be less 
than or equal to the fuel supply, which is depicted in Eqn. 
(8).  

𝑢𝐷𝐺(𝑡) = {
0, if DG is off
1,           if DG is on

 (1) 

𝑃𝐷𝐺
𝑚𝑖𝑛 ≤ 𝑃𝐷𝐺(𝑡) ≤ 𝑃𝐷𝐺

𝑚𝑎𝑥 (2) 

𝑃𝐷𝐺
𝑚𝑖𝑛(𝑡) = 𝑃𝐷𝐺(𝑡 − 1) − 𝛽0 (3) 

𝑃𝐷𝐺
𝑚𝑎𝑥(𝑡) = 𝑃𝐷𝐺(𝑡 − 1) + 𝛽1 (4) 

𝑃𝐷𝐺
𝑚𝑖𝑛(𝑡) ≤ 𝑃𝐷𝐺(𝑡) ≤ 𝑃𝐷𝐺

𝑚𝑎𝑥(𝑡) (5) 
𝐹𝐶𝐷𝐺(𝑡) = (𝛼0𝑃𝐷𝐺(𝑡)2 + 𝛼1𝑃𝐷𝐺(𝑡) + 𝛼2)∆𝑡 (6) 

𝐶𝐷𝐺(𝑡) = 𝐶𝑓𝑢𝑒𝑙𝐹𝐶𝐷𝐺(𝑡) (7) 

∑ 𝐹𝐶𝐷𝐺(𝑡) ≤ 𝐹𝑆

𝑇

𝑡=0

 (8) 

Next, we discuss the constraints for the PV source. In 
this paper, the PV output at each time, 𝑃𝑃𝑉(𝑡) , is a 
function of the maximum output, 𝑃𝑃𝑉

𝑚𝑎𝑥 and time. This 
is a simplified, data-driven approach to directly calculate 
the PV power output instead of relying on instantaneous 
solar irradiance and temperature. This relationship is 
represented with the function 𝑓𝑃𝑉 in Eqn. (9) below.  

𝑃𝑃𝑉(𝑡) = 𝑓𝑃𝑉(𝑃𝑃𝑉
𝑚𝑎𝑥 , 𝑡) (9) 

The BESS is the final micro-source in the VBMG. The 
power output at each time, 𝑃𝐵𝐸𝑆𝑆(𝑡), is constrained by 
battery ratings, so the power limits are similar to those 
of the DG and are shown in Eqn. (10). The state-of-charge 
at each time, 𝑆𝑂𝐶(𝑡), can be calculated using Eqn. (11) 
where 𝐸𝐵𝐸𝑆𝑆  is the energy capacity of the BESS. Note 
that this requires an initial SOC value to be known. There 
are some constraints on the SOC of the BESS as well. 
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First, the SOC is constrained in a certain range, 𝑆𝑂𝐶𝑚𝑖𝑛 
and 𝑆𝑂𝐶𝑚𝑎𝑥, as given in Eqn. (12). Second, the final SOC 
at the end of the operational time, 𝑇, is constrained to 
be above or equal to a certain value, 𝑆𝑂𝐶𝑓𝑖𝑛𝑎𝑙 , as 

depicted in Eqn. (13). Additionally, battery degradation is 
also considered in this paper. The model from [7] is used, 
which approximates the degradation primarily based on 
the limited number of life cycles inherent to the battery. 
The battery degradation cost can be approximated using 
Eqn. (14), where 𝐶𝐵𝐸𝑆𝑆(𝑡)  is the degradation cost at 

each time, 𝐶𝐵𝐸𝑆𝑆
𝑒𝑥𝑝𝑒𝑛𝑠𝑒

 is the capital expense of the BESS, 
and 𝑛𝑐𝑦𝑐𝑙𝑒𝑠  is the number of lifetime cycles for the 

BESS.

𝑃𝐵𝐸𝑆𝑆
𝑚𝑖𝑛 ≤ 𝑃𝐵𝐸𝑆𝑆(𝑡) ≤ 𝑃𝐵𝐸𝑆𝑆

𝑚𝑎𝑥  (10) 

           𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡 − 1) −
𝑃𝐵𝐸𝑆𝑆(𝑡 − 1)∆𝑡

𝐸𝐵𝐸𝑆𝑆
 (11) 

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶(𝑡) ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 (12) 
𝑆𝑂𝐶(𝑇) ≥ 𝑆𝑂𝐶𝑓𝑖𝑛𝑎𝑙  (13) 

𝐶𝐵𝐸𝑆𝑆(𝑡) =
𝐶𝐵𝐸𝑆𝑆

𝑒𝑥𝑝𝑒𝑛𝑠𝑒|𝑃𝐵𝐸𝑆𝑆(𝑡)|∆𝑡

𝑛𝑐𝑦𝑐𝑙𝑒𝑠𝐸𝐵𝐸𝑆𝑆
 (14) 

3.2 Loads 
The various loads on the system were mentioned 

briefly in the introduction. The total load at each time, 
𝐷(𝑡), is approximated by summing the demand at each 
time for each load. For example, pump loads can be 
approximated as a function of the flooded area (𝐴𝑓𝑙𝑜𝑜𝑑) 

and elevation (𝑒𝑎𝑟𝑒𝑎). Meanwhile, loads from lighting 
systems can be approximated by a function considering 
time-of-day and the number of lights required. These are 
shown in Eqns. (15) and (16). The total load at each time 
can then be calculated using Eqn. (17). Finally, the power 
balance constraint is formulated in Eqn. (18), which 
constrains the entire system to ensure all the critical 
loads are being met at all times. 

𝐷𝑝(𝑡) = 𝑔(𝐴𝑓𝑙𝑜𝑜𝑑 , 𝑒𝑎𝑟𝑒𝑎) (15) 

𝐷𝐿(𝑡) = ℎ(𝑡, 𝑛𝐿) (16) 
𝐷(𝑡) = 𝐷𝑝(𝑡) + 𝐷𝐿(𝑡) (17) 

𝑢𝐷𝐺(𝑡)𝑃𝐷𝐺(𝑡) + 𝑃𝑃𝑉(𝑡) + 𝑃𝐵𝐸𝑆𝑆(𝑡) = 𝐷(𝑡), ∀𝑡 (18) 
 

3.3 Optimization problem formulation 
The optimization objective is to maximize the 

operational time, 𝑇 , subject to all the constraints 
mentioned in Section 3. The optimization should 
therefore also minimize DG usage since the operational 
time is primarily dependent on fuel supply. The objective 
function is compactly written as: 

max
𝑥

𝑓(𝑥)  (19) 

where 𝑓(𝑥) = 𝑇. As aforementioned, this is subject 
to constraints which are listed as Eqns. (1) through (18). 

The optimization variable, 𝑥 , is defined below and 
includes the total operation time, 𝑇 , the DG status, 
𝑢𝐷𝐺(𝑡), the DG output, 𝑃𝐷𝐺(𝑡), the PV output, 𝑃𝑃𝑉(𝑡), 
and the BESS output, 𝑃𝐵𝐸𝑆𝑆(𝑡), at all times 𝑡 ≤ 𝑇. 
𝑥 = (𝑇, 𝑢𝐷𝐺(1), … , 𝑢𝐷𝐺(𝑇), 𝑃𝐷𝐺(1), … , 𝑃𝐷𝐺(𝑇), 𝑃𝑃𝑉(1), 

… , 𝑃𝑃𝑉(𝑇), 𝑃𝐵𝐸𝑆𝑆(1), … , 𝑃𝐵𝐸𝑆𝑆(𝑇)) 
This optimization problem is a nonlinear mixed-

integer problem with nonlinear constraints. One major 
challenge for solving this problem was including the 
operational time as a variable when many of the other 
values were dependent on the operational time (i.e., 
operational time typically needs to be a preset value to 
solve the problem). To solve this challenge, an indicator 
variable was utilized to maximize the time duration while 
ensuring all constraints could be met, and an upper 
bound was implemented on the time duration in order 
for the model to be solvable. 

Maximizing the total operational time allows the 
VBMG to optimize operations for sustained success in 
the mission. In many of the example missions, the 
importance of success must be emphasized since the 
situation may be life or death for some. Furthermore, the 
problem solution will have large implications on 
decisions, such as whether to carry out a disaster rescue 
and recovery mission, in all applications.  

4. CASE STUDY 
The optimization process was simulated using 

Gurobi Optimization [8] in conjunction with Python. A 
time step of one hour is used in this case study. The 
micro-source parameters used for the DG, PV, and BESS 
are summarized in Table 1. 

The 24-hr load was approximated using parameters 
mentioned in Section 3.2 and the resulting load profile is 
shown in Fig. 2. Note that the load profile is based on 
expectations for a VBMG with the components chosen, 
and it is simply an example. 

 
Table 1: Micro-source Parameters 

Parameter Value Parameter Value 

𝑃𝐷𝐺
𝑚𝑖𝑛 27 kW 𝑃𝐵𝐸𝑆𝑆

𝑚𝑖𝑛  -20 kW 

𝑃𝐷𝐺
𝑚𝑎𝑥 90 kW 𝑃𝐵𝐸𝑆𝑆

𝑚𝑎𝑥  20 kW 

𝛽0 10 kW 𝐸𝐵𝐸𝑆𝑆 46 kWh 

𝛽1 10 kW 𝑆𝑂𝐶𝑚𝑖𝑛 25% 

𝛼0 -8.229(10-4) 𝑆𝑂𝐶𝑚𝑎𝑥 90% 

𝛼1 3.951(10-1) 𝑆𝑂𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 90% 

𝛼2 -4.857(10-2) 𝑆𝑂𝐶𝑓𝑖𝑛𝑎𝑙 25% 

𝐶𝑓𝑢𝑒𝑙 0.547 $/L 𝐶𝐴𝑃𝐸𝑋𝐵𝐸𝑆𝑆 $24,700 

𝐹𝑆 757.08 L 𝑛𝑐𝑦𝑐𝑙𝑒𝑠 5,000 

𝑃𝑃𝑉
𝑚𝑎𝑥 10.3 kW   
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Finally, the optimization results are summarized in 
Table 2. Along with the complete system, results are also 
shown if only the DG is included. The tabulated results 
show the operational costs as they may be of 
significance, although they were not directly minimized 
in the optimization. The corresponding power flow graph 
is depicted in Fig. 2. The power flow graph shows some 
interesting behavior. First, the PV only outputs power 
during the day when sunlight is present, and it follows a 
smooth ramp up and ramp down process. Also, due to 
the DG output change from one time step to the next 
being constrained, the BESS fluctuates in quite a peculiar 
fashion. The BESS fluctuations could also be caused, in 
part, by the SOC constraints. Overall, we see that the DG 
is responsible for meeting a large portion of the load over 
the time horizon.  
 

Table 2: Optimization Results 
Parameter All Components DG Only 

Operational Time 52 h 47 h 

Total DG Cost $416.38 $416.92 

Total BESS Degradation 
Cost 

$21.54 $0.00 

Total Operational Cost $437.92 $416.92 

5. CONCLUSION 
The results for the maximum operational time for 

the given system show that it could operate for 52 hours. 
After this time, there is not enough fuel supply to 
continue operation. This means that it is critical for the 
disaster rescue to be completed in 52 hours or less, 
otherwise the mission will fail. However, the possible 
operational time would be reduced by five hours if only 
the DG is used in the system, which proves the benefit of 
storage and renewable components. There are also 
compromises made when solving the problem in this 
fashion. For instance, if a mission can be accomplished in 
less time, then it may be possible to use the DG more and 
therefore not be as reliant on the other sources which 

may be less reliable. Additionally, the total operational 
cost, which is $437.92, is presented which can be useful 
to decide on the financial feasibility of the disaster 
rescue. If the operational cost is deemed infeasible, then 
it may be decided to cancel the disaster rescue.  
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