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ABSTRACT 
 The potential for saving on energy related cost with 

timely and accurate Fault Detection and Diagnosis (FDD) 
in the air-conditioning system which is as one of the 
major energy consumer in buildings has been estimated 
to huge. In recent years, the research on fault diagnosis 
of air-conditioning systems has mostly focused on single 
fault or multiple faults. While, there is less research on 
simultaneous faults because of the complexity of 
simultaneous faults. This paper proposes a diagnosis 
method based on deep convolutional neural network, 
which can effectively diagnose the common two 
simultaneous faults and three simultaneous faults in 
variable flow systems. The results show that this method 
can effectively isolate faults in the case of multiple faults 
and multiple-simultaneous faults. The diagnostic 
accuracy is over 98%, and the Hamming loss value is 
lower 1. 5%. 
 
Keywords: deep convolutional neural network, Variable 
refrigerant flow system, simultaneous faults, Fault 
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1. INTRODUCTION 
The energy consumed by the buildings and buildings 

construction sectors is constantly rising, accounting for 
36% of the final global energy in 2018[1]. The air-
conditioning system is one of the primary energy 
consumers in buildings[2], exceeding 50%[3]. Especially 
in China, as the requirements for building indoor thermal 
comfort continue to increase, it accounts for more than 
30% of the total residential electricity consumption[4]. 
According to a survey of UK buildings, using automatic 
fault detection and diagnosis (AFDD) technology to 
diagnose faults in the early stage, we can reduce energy 
waste caused by the HVAC&R system faults to less than 
15%. Without a diagnosis, the energy waste will reach 
25-50%[5]. Therefore, establishing AFDD models to 
reduce energy consumption in air-conditioning systems 

has become a research hotspot in the past two 
decades[6, 7].  

The FDD method in the HVAC system can usually be 
classified into three approaches[8]: model-based, 
knowledge-based, and data-based. In this classification, 
62% of the publications employ process history (data-
driven) models since the data-driven method is more 
suitable to modern engineering systems with large-scale 
domains[5]. In addition, using data-driven methods, 
excellent results have been achieved in the fault 
diagnosis of sensors[9, 10], valves fault[11], refrigerant 
undercharge/upcharge[12], and condenser/evaporator 
fouling[13, 14] of the air conditioning system. Therefore, 
it’s a feasible research direction to use data-driven 
methods for air-conditioning system fault diagnosis.  

The fault diagnosis of the air-conditioning system 
started with a single fault[12], and then gradually 
extended to multiple faults[15]. The predecessors made 
many contributions to the fault diagnosis of the air-
conditioning system. However, due to the complexity of 
simultaneous faults, the diagnosis becomes more 
difficult, and there is less research on it. Wu et.al[16] 
proposed a hybrid data-driven diagnosis model for air 
handling units simultaneous faults. Asgari et.al[17] 
proposed a data-driven approach to simultaneous fault 
detection and diagnosis in data centers. None of these 
research objects involve VRF systems. But in actual 
situations, simultaneous faults are inevitable in VRF 
system. Carrying out simultaneous fault diagnosis for 
VRF system has realistic background and practical 
significance. 

2. METHOD  

2.1 Convolutional Neural Networks 

 Convolutional neural network (CNN) consists of three 

layers, convolutional layers, pooling layers, and a fully-

connected layer. And the convolutional layers have 

convolutional filters and a nonlinear activation function. A 

CNN architecture as following: 
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Firstly, before activation function, the convolutional 

filters make new feature maps 𝑢  through convolution 

operation with input data 𝑥 in the lth layer: 

𝑢𝑖𝑗
𝑙 = ∑ ∑ 𝑤𝑎𝑏

𝑙 𝑥𝑖+𝑎−1 𝑗+𝑏−1
𝑙−1 + 𝑏𝑖𝑗

𝑙𝐵
𝑏=1

𝐴
𝑎=1       (1) 

where A is the height of a convolutional filter, B is the width of 

a convolutional filter, 𝑤  is the weight parameter of 

convolutional filters and 𝑏 is a bias. 

After the convolution operation, a nonlinear activation 

function 𝑓(∙) is applied to all the elements of the feature map 

arrays. A typical nonlinear activation function is the ReLU 

function as follows: 

𝑓(∙)  = max(𝑢, 0)              (2) 

Secondly, neighborhood values are merged into one 

representative value by applying pooling operation to the 

elements of feature mapping. Typical pooling operations are 

max-pooling and average-pooling. An average pooling 

operation is described as follows: 

𝑢𝑖𝑗
 =

1

𝐴2
∑ ∑ 𝑥𝑖+𝑎−1 𝑗+𝑏−1

 𝐴
𝑏=1

𝐴
𝑎=1          (3) 

where 𝑢𝑖𝑗
  is the value of feature map after pooling operation, 

A is the height and width of pooling area, and 𝑥𝑖𝑗
  is the value 

of a feature map after activation function. 

Thirdly, all the values of feature maps are connected with 

the input nodes of the fully-connected layer after the pooling 

operation. The feedforward propagation process is shown as 

follows, and activation is also the ReLU function 𝑓(∙), but an 

activation function of an output layer is a Softmax function: 

𝑥𝑗
𝑙 = 𝑓(∑ 𝑤𝑗𝑖

𝑙 𝑥𝑖
𝑙−1 + 𝑏𝑗

𝑙𝐼
𝑖=1 )             (4) 

𝑦𝑘 = 𝑒𝑥𝑘

∑ 𝑒𝑥𝑘𝐾
𝐾=1

⁄                   (5) 

where 𝑥𝑗
𝑙  is the output value of the jth node in the lth layer after 

activation function, 𝑦𝑘  is the output value of the kth output 

node. K is the total number of output nodes, 𝑥𝑘  is the input 

value of the kth output node. 

Lastly, a cost function  𝐶  is needed to train a CNN 

model, and then the new weights 𝒘 of a neural network are 

updated by subtracting the gradient of the cost function 

multiplied by a learning rate 𝜀 from the previous weights 𝑤, 

𝐶(𝒘) = −1

𝑁
∑ ∑ 𝑑𝑛𝑘𝑙𝑜𝑔𝑒𝑦𝑛𝑘

𝐾
𝑘=1

𝑁
𝑛=1           (6) 

𝒘(𝑡+1) = 𝒘(𝑡) − 𝜀∇𝐶 = 𝒘(𝑡) − 𝜀𝜕𝐸

𝜕𝒘
        (7) 

where N is the total number of samples, K is the total number 

of output nodes , 𝑑𝑛𝑘 is the correct answer of the kth output 

node in the nth sample, and 𝑦𝑛𝑘 is the output value of the kth 

output node in the nth sample. 

2.2 The diagnosis strategy 

The fault diagnosis strategy for VRF system based on 
DCNN in this study mainly contains four part. Fig.1 is the 
fault diagnosis research strategy diagram in this study. 
The first part is experiments and data collection. We 
considered five types of common faults and their 
corresponding two and three simultaneous faults in VRF 
system. The second part is data preprocessing. For the 
proposed CNN model, this part only need the data 
preliminary processing step which only contains data 
integration and missing value elimination. The next part 

is FDD model training. The fault decoupling module is 
also effective at this time to provide construction 
variables to improve model performance. The end part is 
FDD model testing and fault diagnosis. 

(1) Experiments and Data collection (2) Preprocessing of data
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Fig. 1 The fault diagnosis research strategy diagram 

3. EXPERIMENTAL SETUP AND DATA INTRODUCTION 
A scheme of the experimental VRF system is shown 

in Fig.2. It is composed of five indoor units with 
independent temperature control and one outdoor unit. 
The rated cooling capacity of the five indoor units are 
2.2kw, 2.8kw, 2.8kw, 3.6kw, and 7.1kw. The refrigerant 
of this VRF system is R410A with standard charge 6.3 kg. 
All experiments were performed in a standard 
psychrometric testing room, and all our operations are 
strictly in accordance with the following Chinese testing 
standards: GB/T 18837-2002, GB/T7725-2004 and GB/T 
17758-2010. Five types of common faults in the VRF 
system is consider in this study: Indoor fouling(IF), 
outdoor fouling(OF), overcharge fault(OC), undercharge 
fault(UC), and indoor electronic expansion valve 
fault(EF).  

The experimental data collection is carried out 
completely in accordance with the standard manual. The 
data collection time interval is 10s. After three month-
long experiment, a total of 39051 pieces of experimental 
data were obtained under different working conditions.  

The double simultaneous faults have the following 
combinations: IF+OF, OC+IF, OC+OF, UC+IF, UC+OF, 
EV+IF, EV+OF. The three simultaneous faults have the 
following combinations: OC+IF+OF50, OC+IF+OF75, 
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UC+IF+OF50, UC+IF+OF75. Here, OF50 means that the 
indoor fouling fault intensity is 50%. 

 
Fig.2. The schematic diagram of the VRF system  

4. RESULT 

4.1 Evaluation index 

Let D denote a multi-label dataset, |𝐷| represents 
the total number of samples, L indicates the type of 
label,  |𝐿|  represents the total number of labels. H 
represents a multi-label classifier, let Zi = H(xi) be the 
prediction result set based on XI with H. 

Hamming loss represents the proportion of error 
samples in all labels, so the smaller the value, the 
stronger the classification ability of the network. Its 
calculation formula is as Eq. (8). 

𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝑙𝑜𝑠𝑠 (𝐻, 𝐷) =
1

𝐷
∑

𝑌𝑖∆𝑍𝑖

|𝐿|

|𝐷|
𝑖=1       (8) 

Accuracy evaluates the proportion of correctly 
predicted examples over the whole data set. The 
accuracy is calculated as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐻, 𝐷) =
1

𝐷
∑

𝑌𝑖∩𝑍𝑖

𝑌𝑖∪𝑍𝑖

|𝐷|
𝑖=1          (9) 

The F1 score is a comprehensive criterion by taking 
account of both recall and precision. The expressions are 
demonstrated from Eq. (10) to Eq. (12) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝐻, 𝐷) =
1

𝐷
∑

𝑌𝑖∩𝑍𝑖

|𝑍𝑖|

|𝐷|
𝑖=1           (10) 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝐻, 𝐷) =
1

𝐷
∑

𝑌𝑖∩𝑍𝑖

|𝑌𝑖|

|𝐷|
𝑖=1            (11) 

f1_score =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
          (12) 

The index of FAR is regularly used to evaluate the 
performance of the model’s false alarm. It is defined as 
the ratio of the misjudge data to the total data in normal 
operation. The missed alarm rate (MAR) represents the 
proportion of the number of faults that the model 
misjudged the original fault data as normal to the total 
faults. The detailed calculation formula can be consulted 
in Literature[18]. 

4.2 Fault diagnosis  

Table 1 shows the diagnosis results of the training set 
and testing set of the CNN model. The results show that 

the CNN model has excellent diagnostic performance for 
multi-connected systems when multiple faults and 
multiple simultaneous faults occur. Diagnosis accuracy 
reaches 98%. From the point of view of false alarm rate 
and missed alarm rate, the values are both lower than 
2%. Among them, the missed alarm rate is lower, less 
than 0.5%. This shows that the CNN model has excellent 
fault recognition capabilities. Of course, from the 
perspective of recall and F1, the model still has room for 
improvement. 

Table 1 The fault diagnosis results of CNN model 

Evaluation index Training data  Testing data 

Accuracy  98.92% 98.28% 
Hamming loss 0.23% 0.40% 
Recall  85.98% 85.73% 
F1_score 85.92% 85.59% 
FAR 1.44% 1.65% 
MAR 0.17% 0.38% 

Fig.3 and Fig.4 are the CNN model fault diagnosis of 
online dataset. Among them, Fig.3 shows the diagnosis 
result under normal operation and double simultaneous 
faults. It can be seen from the timing diagram that when 
the VRF system is operating normally, the CNN model will 
still misjudge some data points as faults, such as OC, UC, 
IF, OF. But none of the cases was misjudged as EF fault. 
When the real operating state of the system is IF+OC 
fault, the CNN model judges three sampling points as 
normal and one sampling point as OC+OF fault. The case 
of model errors is much less than the data diagnosis 
during normal operation. This is also consistent with the 
performance of the model itself in the training set and 
test set. 

 
Fig.3. Timing diagram of online dataset (normal and 

double simultaneous faults) 
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Fig.4. Timing diagram of online dataset (UC fault and 

three simultaneous faults) 
Fig.4 shows the diagnosis result under UC fault 

operation and three simultaneous faults (OC+IF+OF) 
operation. The results show that the CNN model will 
have misjudgments between fault types. The CNN model 
misjudged the UC faults at 10 sample points as OF faults, 
and misjudges 3 sample points as IF faults. When three 
simultaneous faults occur, the CNN model shows 
excellent performance. Only at three sampling points, 
the actual “OC+IF+OF” fault is judged as simultaneous 
faults “UC+IF+OF” fault or “OF+EF” fault. 

5. CONCLUTION 
Aiming at the problem of simultaneous fault 

diagnosis of VRF systems, this paper obtains 
corresponding fault data through experiments, proposes 
a fault diagnosis method based on deep convolutional 
network, and uses online data sets to verify it. The results 
show that the method has a good ability to identify 
simultaneous faults in VRF systems, with a diagnosis 
accuracy of 98% and a Hamming loss value of 0.4%. 
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