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ABSTRACT 

 The Power Sector is undergoing a rapid 
technological change with respect to implementation of 
low carbon technologies. The IEA Energy Outlook 2017 
shows that the investments in Renewables for the first 
time are equal to those on the fossil sources. It is likely 
that the conventional gas turbines and internal 
combustion engines will need to be integrated in systems 
employing biofuels and/or CCUS (Carbon Capture Usage 
and Storage). Also, the European Union is moving rapidly 
towards low carbon technologies (i.e. Energy Efficiency, 
Smart Grids, Renewables and CCUS), see the Energy 
Union Strategy. This paper presents the basic for the 
design of CLC combustors to be coupled with gas 
turbines. Based on CFD modeling and detailed kinetics 
models. 
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NONMENCLATURE 

Abbreviations  

CFD Computational Fluid Dynamic  

CLC Chemical Looping Combustion 

GT Gas Turbine 

OC Oxygen Carrier 

1. CFD MODELING OF FLUIDISED BED COMBUSTION 
The Power Sector is undergoing a rapid technological 

change with respect to implementation of low carbon 
technologies. The IEA Energy Outlook 2017 shows that 
the investments in Renewables for the first time are 
equal to those on the fossil sources. It is likely that the 
conventional gas turbines and internal combustion 
engines will need to be integrated in systems employing 
biofuels and/or CCUS (Carbon Capture Usage and 
Storage). Also, the European Union is moving rapidly 
towards low carbon technologies (i.e. Energy Efficiency, 
Smart Grids, Renewables and CCUS), see the Energy 
Union Strategy.  

In this context a Marie Curie project has been funded 
in the Spanish National Research Council (CSIC), Instituto 
de Carboquimica (ICB) named GTCLC-NEG which 
objective is to promote a Carbon Negative Technology, 
able to burn multiple biofuels derived from biomass (eg, 
pyrolysis oil, biogas and syngas) and to capture the CO2 
emissions at a very low cost. In this way there will be 
negative GHG emissions due to the use of BECCS 
(Bioenergy with Carbon Capture and Storage), a 
technology which is going to be developed within 2050, 
according to the IPCC. The proposed plant is based on the 
coupling of a Chemical Looping Combustor to a gas 
turbine, as proposed in figure 1. 

As it can be seen in the proposed plant the 
compressed air used to oxidize the oxygen carrier is then 
expanded in a gas turbine to produce electricity. In the 
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fuel reaction biofuels (in this case pyrolysis oils) are used 
to reduce the oxygen carrier. Possible technical barriers 
are: (1) high efficiency bimetallic oxygen carriers are 
needed; (2) low attrition rate oxygen carriers are needed 
which can work in extreme conditions; (3) kinetics 
aspects under high pressure and temperature conditions 
are not known; (4) reactor injection system has to be 
adapted to biofuels; the use of the hot air produced from 
the air reactor (see figure 1) in a gas turbine has to be 
optimized; exhausts should be filtered to retain the dust 
released by oxygen carrier attrition; (5) high electrical 
efficiency of the power system has to be granted 
together with high fuel conversion in the combustor 
[1,2,3]. 

To summarize, one of the most critical aspects of the 
technology is the operation of the chemical looping 
combustor at high pressures. This has been rarely done 
on the large scale, for this reason the modeling of the 
reactor and of the chemical processes that happen 
during pressurized chemical looping combustion appears 
to be of scientific interest.  

Effective models have been already developed at 0D 
level in the Instituto de Carboquimica [4], these are 
based on the Shrinking Core Model (SCM) which is widely 
adopted in literature to describe the oxygen carrier 
behavior. Also CFD models have been developed by [5-
28] Nevertheless, the effect of pressure on CLC process 
has not yet been fully described. 

This paper aims at presenting different strategies 
which can be found in the literature, to model the fuel 
and the air reactors with CFD software with improved 
kinetic constants. In the literature there are about 150 
papers on CFD at the moment (27th august 2021). The 
main research groups are cited together with the 
representative work in table 1. 

 
Table 1: Most significant works on CFD modeling of 

Chemical Looping Combustion, Gasification and 
Reforming 

Group Source Software DEM  
Leeds Uni, IFP 
Energies Nouvelles 
and Total 

[5] ANSYS 
FLUENTTM 
and EDEM 

Yes 

Singapore NUS [6] N.R. No 
HUST, China [7] CPFD No 
Nanjing [8] ANSYS 

FLUENTTM 
No 

SINTEF [9] PFC3D Yes 
Washington 
University 

[10] ANSYS 
FLUENTTM 

Yes 

Masdar Institute of 
Science and 
Technology 

[11] ANSYS 
FLUENTTM 

No 

TU Darmstadt [12] ANSYS 
FLUENTTM 

No 

Imperial College [13] ANSYS 
FLUENTTM 

No 

NETL [14] Barracuda No 
University of New 
South Wales 

[15] ANSYS 
FLUENTTM 

No 

Harriot Watt 
University 

[16] MFIX No 

CPFD Software [17] Barracuda-
VRTM 

No 

Indian Institute of 
Technology 

[18] ANSYS 
FLUENTTM 

No 

The University of 
Nottingham 

[19] ANSYS 
FLUENTTM 

No 

The University of 
Newcastle 
(Australia) 

[20] ANSYS 
FLUENTTM 

Yes 

Harbin Institute of 
Technology 

[21] K-FIX No 

Zhejiang University [22] MFIX No 
University of Utah [23] Barracuda-

VRTM 
No 

IMFT Tolouse, TU 
Wien 

[24] NEPTUNE_
CFD 

No 

The University of 
Western Ontario 

[25] Barracuda-
VRTM 

No 

KAIST [26] ANSYS 
FLUENTTM 

No 

University of North 
Dakota 

[27] MFIX No 

 

 
Fig. 1. GTCLC-NEG LAYOUT 
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From table 1 it can be see that the most of the CFD 
studies are realized with ANSYS FLUENTTM, nevertheless 
two interesting alternatives appear to be: the use of 
MFIX (Multiphase Flow with Interphase eXchange) 
software [28,29] developed at the National Energy 
Technology Laboratory (NETL) and available on the 
internet at http://www.mfix.org and the use of 
Barracuda-VR. Another important aspect is that the use 
of Discrete Element Models (DEM) is not much diffused 
at the moment. An interesting approach could be to join 
CFD-DEM analysis with detailed kinetics derived from 
TGA and controlled with molecular dynamics and DFT 
techniques. 

2. DETAILED KINETIC MODELS OF IRON REDUCTION 
If we consider the models presented in table 1, we 

see that very few of them (about 10%) consider chemical 
reactions. Among them few consider reduction of CH4 
with iron oxygen carriers, while Nickel oxides are 
regarded as the preferred oxygen carriers (OCs). 

For this reason, in the MSCA project GTCLC-NEG it 
has been chosen to work at first with iron-based OCs 
which can be based on alumina loaded with iron, see 
[30], which grant a lower total solids inventory if 
compared with other iron-based OCs.  

If we think at the iron reduction reactions which 
happen in the reactor, in [31] it is reported that during 
iron (hematite) reduction inside the reactor namely 
magnetite is generated with small concentrations of 
wustite; according to the following two equations: 

 
12Fe2O3 + CH4 -> 8Fe3O4 + 2H2O + CO2       (1) 

 
4Fe3O4+CH4 -> 12FeO+2H2O+CO2         (2) 

 
The set of kinetic constants (activation energy, order 

of reaction and pre-exponential factor) for these two 
heterogeneous reactions have been calculated by 
several researchers (see [30]). These values can change 
depending on the diameter of the oxygen carriers, their 
purity and chemical characteristics and even the reaction 
conditions can have an influence. The kinetic triplets 
depend also by the model which is chosen for example in 
[32] it is chosen a modified volumetric model while more 
often a shrinking core model (SCM) is preferred, see [33]. 
If we take into consideration the values reported in [34] 
we can infer that for Tierga ore reduction (representing 
equation 1) with natural gas the following triplet can be 
considered: 

- n (-) = 1.0 ± 0.05; 
- ks,0 (mol1−nm3n−2s−1) = 7.41•105 

- Ech (kJ/mol) = 257 ± 14. 
If we want to consider the second reduction 

equation (equation 2), we have to consider that Shi et al. 
2008 [34] suggest that the kinetic constant (k) of the 
reaction between magnetite and wustite is the same of 
the kinetic constant of the reaction between hematite 
and magnetite. 
If we want to couple a CLC combustor with a gas turbine, 
we have to take into consideration that for the aims of 
the GTCLC_NEG process the kinetic triplets need to be 
derived at high pressure (with Pressurized TGA tests, see 
table 2). 

 
Table 2: PTGA tests on oxygen carriers 

Group Fuel OC Source 
CSIC, Spain Syngas CuO/Al2O3, 

Fe2O3/Al2O3, 
NiO/Al2O3 

[35-36] 

USDOE Syngas NiO [37] 
Southeast 
University 

CO, Coal Hematite [38-41] 

The Ohio 
State 
University 

CH4, H2 Fe2TiO5 [42,43] 

Eindhoven 
University of 
Technology 

CO, H2 CuO/Al2O3 
NiO/CaAl2O4 

[44,45] 

Canmet 
ENERGY & 
North China 
Electric 
Power 
University 

CO FeTiO3 [46-48] 

University of 
Kentucky 

Coal 
char 

FeTiO3, Red 
mod 

[49] 

University of 
Science and 
Technology 
Beijing 

CH4 Cu-based [50] 

Korea 
Institute of 
Energy 
Research 

CH4 NiO, Mn3O4, 
CuO, Fe2O3 

[51] 

University of 
Connecticut 

CH4 Ni & Cu OCs [52] 

Ningxia 
University 

Coal Fe2O3/Al2O3 [53] 

 
Pressurized Chemical Looping is well described in the 

recent review [54], many works presented in table 2 are 
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taken from it. Table 2 reports only reduction tests 
performed at high pressure, while CSIC and TU 
Eindhoven and also CanmetEnergy have realized also 
oxidation tests in pressurized conditions [55,56]. 

 

3. CONCLUSIONS 
A state of the art on CFD modeling of CLC plants is 

proposed together with some reflections on the optimal 
kinetics to adopt for iron derived OCs on both 
atmospheric and pressurized conditions. It can be seen 
from the publication that pressurized CLC is rapidly 
gaining interest in the scientific community which is 
developing integrated approaches on the analysis of 
chemical and physical phenomena also based on modern 
DFT and MD modeling. 
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