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ABSTRACT 
This paper proposes a hierarchical predictive energy 

management strategy (EMS) for hybrid electric bus (HEB) 
with an intelligent state of charge (SOC) reference 
planning method. In the cloud layer, future driving cycle 
is acquired through the intelligent transportation system 
(ITS) and well-trained neutral networks of deep 
deterministic policy gradient (DDPG) are extracted to 
plan the SOC reference trajectory quickly. In the vehicle 
layer, back propagation neutral network (BP-NN) is used 
to predict the velocity in a short term and an optimal 
controller is designed to distribute power flows 
optimally. Simulation results show that the fuel economy 
is improved by 2.12% compared with DDPG and reaches 
97.43% of dynamic programming (DP). 
 
Keywords: hybrid electric bus, energy management, 
intelligent SOC reference planning, model predictive 
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NONMENCLATURE 

Abbreviations  

EMS Energy management strategy 
HEB Hybrid electric bus 
SOC State of charge 
ITS Intelligent transportation system 
DDPG Deep deterministic policy gradient 
BP-NN Back propagation neutral network 
MPC Model predictive control 
DP Dynamic programming 
DRL Deep reinforcement learning 
RMSE Root mean square error 

Symbols  

Ft Driving force demand 
Pd Driving power demand 
m Vehicle mass 
g Gravity acceleration 
f Rolling resistance coefficient 
φ Angle of road slope 
Cd Drag coefficient 
A Front area 
v Velocity 
a Acceleration 
𝑚̇𝑓𝑢𝑒𝑙 Fuel consumption rate 

η Efficiency 
T Torque 
ω Rotational speed 
Ibat Current of the battery 
Voc Open-circuit voltage 
R0 Internal resistance 
SOC0 Initial value of SOC 
Q Nominal battery capacity 
α Weight factor of fuel consumption 
β Weight factor of SOC maintaining 
SOCtar SOC target value 
Jk Total cost in the k-th time step 
Δt Sampling time step size 
Np Prediction horizon 
SOCref SOC reference value 

 

1. INTRODUCTION 
Active development of hybrid electric bus (HEB) is an 

effective way to solve urban air pollution and traffic 
congestion. Energy management strategy (EMS) is 
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crucial for the fuel economy of the HEB [1]. There are 
multifarious kinds of EMSs that have been proposed yet, 
and EMSs based on model predictive control (MPC) and 
deep reinforcement learning (DRL) have been widely 
studied in recent years. 

MPC-based EMSs convert global optimization into 
local and adjust the allocation of power flows in advance 
actively by taking advantage of the future distribution of 
driving power demand in the prediction horizon, thus 
achieving a favorable fuel economy [2]. It is of great 
importance to obtain a SOC reference trajectory to guide 
the MPC controller to distribute power flows optimally, 
however, the SOC reference trajectories lack adaptability 
to changeable driving cycles, limiting the improvement 
of the fuel economy [3]. 

DRL based EMSs have gradually flourished with a 
promising prospect, showing an impressive optimization 
performance with great adaptability and robustness for 
HEB [4]. However, most of the researches on DRL-based 
EMSs never take the uncertainty of future driving cycles 
into consideration, which is an inherent attribute of the 
driving cycles, leading to an adverse effect on the fuel 
economy [5]. 

Accordingly, it is more significative to combine the 
MPC-based EMSs with DRL algorithms for the energy 
management of HEB, so as to give full play to the 
advantages of these two types of strategies. Besides, 
with the prosperity of the intelligent transportation 
system (ITS), the whole driving cycle in the future can be 
obtained, and then the global SOC reference trajectory 
can be planned before departure. To this end, this paper 
proposes a hierarchical EMS under the MPC framework 
with an intelligent SOC reference planning method of a 
HEB for favorable fuel economy. 

2. HEB POWERTRAIN MODELLING 

2.1 HEB configuration 

The HEB in this paper adopts the power-split 
configuration to control the engine working in the high 
efficiency area. The powertrain configuration is shown in 
Fig. 1, and the main parameters of the HEB are listed in 
our previous research [6]. 

 
Fig. 1. HEB Powertrain configuration 

2.2 Vehicle dynamics model 

The driving power demand can be calculated as: 
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2.3 Power units model 

The efficiency of engine, MG1 and MG2 are functions 
of speed and torque, which can be formulated as: 
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The battery theoretical model is formulated as: 
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3. HIERARCHICAL PREDICTIVE EMS 

3.1 Training of DDPG 

Deep deterministic policy gradient (DDPG) is a state-
of-art DRL algorithm [7], which is used in this research. 
The state space S, action space A and reward function R 
are respectively defined as: 
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The training dataset is real velocity data collected 
from a fixed bus route with a 15-km distance shown in 
Fig. 2, and the testing dataset is shown in Fig. 3. 

 
Fig. 2. Training dataset 

 
Fig. 3. Testing dataset 
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Fig. 4 shows the mean reward and final SOC of each 
episode during training. It can be seen that after 15 
episodes, the DDPG algorithm converges completely, 
and the final SOC of each episode is close to 0.5, which is 
the SOC target value in equation (4). Fig. 4 indicates a 
favorable training effect of the DDPG algorithm. 

 
Fig. 4. Mean reward and final SOC of each episode. 

3.2 Velocity prediction 

Back propagation neutral network (BP-NN) is utilized 
to predict the future velocity in the next 10 seconds. The 
velocity data shown in Fig. 2 and Fig. 3 are also used as 
the training and testing datasets for BP-NN. 

The velocity prediction result is shown in Fig. 5, and 
the root mean square error (RMSE) is shown in Fig. 6. It 
can be seen that the predicted velocity is smoothly close 
to the real velocity, and the average RMSE is 1.05 m/s, 
showing a favorable prediction performance. 

 
Fig. 5. Velocity prediction result 

 
Fig. 6. RMSE 

3.3 Hierarchical control scheme 

This research adopts dynamic programming (DP) as 
the MPC optimal controller to calculate the optimal 
control sequences during the rolling optimization 
process so as to maximize the optimization effect. The 
cost function of the proposed strategy is: 
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According to the description above, the hierarchical 
control scheme of the proposed strategy in this research 
is shown in Fig. 7. 

 
Fig. 7. Hierarchical control scheme 

4. SIMULATION RESULTS AND DISCUSSION 

4.1 Fuel economy improvement 

The testing dataset shown in Fig. 3 is leveraged as the 
pre-known cycle acquired by ITS. Note that the proposed 
strategy is represented as SOC@DDPG, and the method 
uses constant 0.5 as the SOC reference is SOC@Cons. 

Simulation results of the fuel economy are listed in 
Table 1. The final SOC of both the SOC@DDPG and 
SOC@Cons are constrained about 0.5, and SOC@DDPG 
improves the fuel economy by 2.12% than DDPG, 
showing a superior fuel economy performance. More 
importantly, it only takes 1.08 s to generate the global 
SOC reference trajectory of the SOC@DDPG strategy, 
which is also more conducive to the practical application 
of the proposed strategy in this research. 

Table 1. Simulation results of fuel economy. 

Strategies Final SOC 
Fuel consumption 

(L/100km) 
Fuel 

economy1 

SOC@DDPG 0.4977 23.37 97.43% 
SOC@Cons 0.5011 24.05 94.68% 

DDPG 0.5000 23.89 95.31% 
DP 0.5000 22.77 100% 

1 Compared with DP. 

Engine working points of the four strategies above 
are shown in Fig. 8. There are more working points of 
SOC@DDPG and DP distributed in the high-efficiency 
area. In contrast, much more points of SOC@Cons are 
distributed in the area that consumes more fuel. It is 
worth noting that the points of DDPG are almost 
completely distributed along the optimal operation line 
of the engine owing to the great self-learning ability, 
however, there are still many low efficiency points need 
to be further optimized. 
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Fig. 8. Engine working points 

4.2 SOC tracking performance 

The HEB do not need external charging for battery, 
so it is of great importance to keep SOC close to the 
reference value. The SOC tracking results and deviations 
of SOC@DDPG and SOC@Cons are shown in Fig. 9 and 
Fig. 10 respectively. It can be seen that the MPC optimal 
controller has the ability to track the SOC reference 
trajectories closely. The maximum absolute deviations of 
SOC@DDPG and SOC@Cons are 0.0063 and 0.0087, and 
the mean absolute deviations are 0.0021 and 0.0024 
respectively, indicating that the SOC tracking 
performance of SOC@DDPG is better than SOC@Cons. 
This is because that the DDPG algorithm takes the 
nonlinear characteristics of driving cycles into 
consideration during training by taking advantage of the 
powerful generalization ability while DP only conducts 
the calculation passively. 

 
Fig. 9. SOC tracking results 

 
Fig. 10. Deviations 

5. CONCLUSION 

This paper proposes an intelligent SOC reference 
planning method within a hierarchical MPC-based EMS 
for HEB for favorable fuel economy. DDPG is trained to 
plan the global SOC reference quickly after acquiring the 
driving cycle in a fixed bus route through ITS. BP-NN is 
utilized to predict the short-term velocity and an MPC 
optimal controller is designed to distribute power flows 
optimally. Comparative simulation results indicate that 
the proposed strategy only takes 1.08 s to generate the 
SOC reference trajectory for a 15-km bus route and 
improves fuel economy by 2.12% with a superior SOC 
tracking performance compared with DDPG. 
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