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ABSTRACT 
 Blinds systems, daylighting, natural convection, and 

shielding thermostat from heating appliances are known 
to reduce electricity consumption, reduce energy 
wastage, reduce energy bills, reduce spurious errors in 
thermostatic controls, reduces over-heating of 
compressors, reduces the incidence of burnt motors, and 
fire hazards. Predictive modeling using the multivariate 
logistic stepwise statistical procedure selects from a set 
of independent variables of electricity load management 
survey data gathered from Windhoek City, Namibia to 
develop the best and optimal model in the study.  The 
results indicate that keeping heat-producing appliances 
away from the thermostat so that it can give accurate 
readings is highly interconnected to using blinds systems 
to reduce inlet heat in summer and heat loss in cold 
months. Also, small changes in data values can lead to 
large coefficient estimates and there is a perfect 
(100.0%) correlation between the dependent and 
independent variables. In addition, the proportion of the 
variance explained in the developed model was 97.0%. 
However, there were also no multicollinearity problems 
in the data and the developed model was optimal and 
fairly accurate.   

 
Keywords: blinds systems, daylighting, energy balance, 
energy savings, energy consumption, waste reduction  

1. INTRODUCTION 
Electricity supply shortages in the Southern Africa 

Development Community (SADC) countries prompted 
demand-side management (DSM) programmes and load 
shedding that negatively impacted many countries’ 
socio-economic development [1-2]. Namibia secured 
enough energy beyond August 2016’s winter without 
expecting load shedding. It could acquire 40.0% energy 
locally and the remaining 60.0% from Zambia and 

Zimbabwe [3]. Namibia’s electricity demand rose 
significantly in 2012 because of the mining sector, and 
Eskom supplies over 80.0% of the electricity [4]. Liquid 
fuel is over 63.0% of the total net energy consumption 
[5] and flat load curves in the energy sector because of 
expanding mining activities [6]. Also, Namibia’s 
electricity price and industrial tariffs are high, and South 
Africa rates are 20.0 to 25.0% lower [7].  The majority 
of the poor, unemployed, and rural Namibians cannot 
afford high electricity prices. Also, Namibia’s harsh 
environment and water stress necessitated the Van Eck 
dry-cooling station in Windhoek [8], and the cooling 
water needed is the same as the United Kingdom’s 
thermal electricity generation fleet [9]. Furthermore, 
18.0% of the United Kingdom’s households were fuel 
poor in 2012. Blinds systems (curtains, shutters, and 
shade) over windows and doors reduce inlet heat by 
50.0% in summer and 25.0% in heat outlets in winter 
[10]. Daylighting controls offer commercial benefits in 
the US because around 75.0% of the electricity was 
consumed in buildings nationwide. Day-lighting reduces 
by a third total building energy costs [11]. The total 
electric energy consumed in commercial buildings is 
between 35.0% and 50.0%. Between 10.0% and 20.0% of 
the energy used for cooling buildings can be saved by 
daylighting [12]. Based on building architecture, usage, 
and energy consumption patterns, daylighting could trim 
electric lighting between 20.0% and 80.0% [13]. Turning 
off and dimming lights when not needed saves between 
10.0% and 20.0% of the energy used for cooling a 
building. This also increases employees’ productivity and 
improves the health of building occupants [14]. 

Also, above US$60 billion was expended annually for 
electric lighting that comprises over 37.0% average 
commercial building’s total energy consumption [15]. 
Additionally, over 64 billion square feet of commercial 
buildings floor space is lit by fluorescent systems, and 
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anywhere between 30.0% and 50.0% of the spaces can 
access daylight either by skylights or through windows. 
Consequently, millions of electric lighting fixtures can be 
turned off for some periods of the day for energy savings 
returns [16]. The United Kingdom and the United States 
of America have fully developed electricity markets, 
which effectively control their power systems’ peak 
loads [17]. Also, negative pricing exists in all areas of the 
United States, which reflects a seasonal distribution and 
a raised frequency [18]. Price volatility caused by 
renewable energy injection with government incentives, 
negative price signals caused by over-supply, and price 
spikes caused by over-demand, form the basis for 
electricity load management, future planning, and policy. 
To balance the impacts of electricity over-supply against 
over-demand, we formulate a shielding and thermostatic 
control model using the correlation-covariance method.   

2. MATERIALS AND METHODS  

2.1 Sample size adequacy 

A 5-point Likert scale questionnaire designed for the 
residential electricity load management survey was 
validated by a panel of expert judges and used to gather 
electricity consumption data in Windhoek City, Namibia.  
Only 127 responses out of the over 300 questionnaires 
administered were analysed by the statistical analysis for 
the social sciences (SPSS). Also, the adequacy of the 127 
sample size was proven in [19]. 

Alternatively, the sample size adequacy is proofed 
using the Poisson distribution. The variance becomes: 

𝜎 = {
1

𝑁
∑ (𝑙𝑖 − 𝜇)2𝑁
𝑖=1 }

1
2
                        (1) 

 where 𝜇  is the sample average, 𝑙𝑖  average results, 
and 𝑁  sample size [20]. We invoke the Normal 
distribution if the errors are many and independent. The 
spread of the mean (𝜇) and the variance (𝜎), are good 
estimators of the distribution. For a normal distribution, 
the probability range is [𝜇 − 𝜎, 𝜇 + 𝜎]: 

𝐴(𝜎) = ∫ 𝑃𝐺(𝜇, 𝜎, 𝑡)𝑑𝑡 = 0.68
𝜇+𝜎

𝜇−𝜎
               (2) 

where 𝑃𝐺 is the probability function and 𝑡 is time. For 
100 measurements, each consisting of 127 
measurements, 68.0% lie between (𝜇 − 𝜎) and (𝜇 +
𝜎).  
Let 𝜇 ≡ 𝑁𝑝                                 (3) 
As the probability: 𝑝 → 0, 𝑁 → ∞, 𝜇 is constant, the 
binomial distribution approaches a Poisson distribution:  

𝑃𝑝(𝑛, 𝜇) =
𝜇𝑛

𝑛!
𝑒−𝑛                            (4) 

    However, the mean and the variance of the Poisson 
processes are equal. Hence, its occupancy for any sample 

is (𝑛)
1
2 and 68.0% is the probability that the true value 

is within [127 ∓ (127)
1
2] . The true sample size lies 

between 116 and 138, so the 127 samples used for the 
study are adequate for the study.  

2.2 Correlation between dependent and independent 
variables 

 The correlation coefficient 𝑟𝑥,𝑦  between {𝑦𝑖} 

and {𝑥𝑖}:   

𝑟𝑥,𝑦 ≡
𝜎𝑥,𝑦
2

𝜎𝑥𝜎𝑦
=

∑
1

𝜎𝑖
2(𝑥𝑖−𝜇𝑥)(𝑦𝑖−𝜇𝑦)

𝑁
𝑖=1

{∑
1

𝜎𝑖
2(𝑥𝑖−𝜇𝑥)

2𝑁
𝑖=1 }

1 2⁄

{∑
1

𝜎𝑖
2(𝑦𝑖−𝜇𝑦)

2𝑁
𝑖=1 }

1 2⁄    (5) 

where the mean values of 𝑦𝑖  and 𝑥𝑖 are given by: 
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    From equations 6a and 6b, we have the variances for 
the distributions of {𝑥𝑖} and {𝑦𝑖}: 
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The covariance between 𝑥 and 𝑦: 

𝜎𝑥,𝑦
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That means, 𝑟𝑥,𝑦
2  is related to the slope of 𝑦𝑖  as a 

function of 𝑥𝑖 [20]. 

3. RESULTS AND DISCUSSION  
    The results of the study are shown in Fig. 1 and 
Tables 1-3. Fig. 1 is a combination of “H” cubic, growth, 
and logistic regression interaction cross-lines. The 
attribute of keeping heat-producing appliances from 
thermostats for accurate readings is independent of 
gender. This is so because the two parallel lines [21]  
are standing on 1.0 (male) and 2.0 (female) respectively 
on the 𝑦 −axis. Similarly, the observed, cubic, logistic, 
and growth regression lines are horizontal. These cross-
lines indicate that the respondents were rather 
indifferent in keeping heat-producing appliances away 
from thermostats, although their levels of agreement 
hovered around not sure (3) and agree (2).    

Table 1 indicates a perfect (100.0%) positive 
correlation of keeping heat-producing appliances away 
from thermostats occurring together with using blinds 
systems to reduce inlet heat in summer and heat loss in 
cold months. Also, the model covariance indicates the 
directional relationship of keeping heat-producing 
devices from thermostats for accurate readings vary 
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concomitantly by 1.8% with the dependent variable. 
Also, the correlation measures the strength and direction 
of linear relationships [21]. 

 
Fig.1 I keep heat-producing appliances away from the 
thermostat so that it can give accurate readings 

 Table 2 tests whether there are severe problems of 
multicollinearity. The small changes in the data values 
can lead to large changes in the estimates of coefficients. 
The 0.064 eigenvalue of Dimension 2 that is close to 0.0, 
indicates that keeping heat-producing  
appliances away from thermostats and using blinds 
systems to reduce inlet heat in summer and heat loss in 

winter are highly interconnected operations. The 
condition index values greater than 15 indicate possible 
problems of collinearity [22]. But, Dimensions 1 and 2 of 
model 1 indicate that there are no collinearity problems 
in the data because the Condition indices are less than 
15 [22]. That means, 3.0% of keeping heat-producing 
appliances from thermostats give accurate readings in 
the first Dimension while 97.0% was the explained 
variance in Dimension 2.  

Table 3 indicates the residual statistics of the model, 
which is the degree to which a model accounts for the 
variation in the observed data. Residuals check for bias. 
The standardised residual should be less than -2 or 
greater than 2. Ordinarily, we expect 95.0% of cases to 
have standardised residuals within ±2.0  [22]. For a 
sample of 127, 6 cases (5.0%) are expected to have 
standardised residuals outside these limits: Therefore, 
our sample is what we expected it to be and that it 
conforms to a fairly accurate model. 

TABLE 1.  Coefficient Correlations 
 

Model 
I keep heat-producing appliances away from the 
thermostat so that it can give accurate readings 

I keep heat-producing appliances away from thermostat 
so that it can give accurate readings 

1.000 

I keep heat-producing appliances away from the 
thermostat so that it can give accurate readings 

.018 

 

 

TABLE 2. Collinearity Diagnostics 

Model Dimension Eigenvalue 
Condition 

Index 

Variance Proportions 

(Constant) 
I keep heat-producing appliances away from the 
thermostat so that it can give accurate readings 

1 1 1.936 1.000 .03 .03 
2 .064 5.505 .97 .97 

 

 

TABLE 3. Residuals Statistics 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value 1.6958 3.6596 2.5154 .50464 121 
Residual -2.6596 3.3042 -.0361 1.04128 121 
Std. Predicted Value -1.591 2.527 .128 1.058 121 
Std. Residual -3.601 4.474 -.049 1.410 121 
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4. CONCLUSION  
Conclusively, shielding and thermostatic control are 

independent of the gender of respondents, and 
electricity consumers are either indifferent or oblivious 
of the costs of spurious dynamic thermostatic control 
due to energy wastage. There was a perfect (100.0%) 
positive correlation between keeping heat-producing 
appliances away from thermostats. Also, using blinds 
systems to reduce energy loss and thermostatic controls 
are highly interconnected operations. Therefore, small 
changes in the data values can lead to large changes in 
the estimates of the coefficients. Because the condition 
indices are less than 15 it means that there are no 
collinearity problems in the data and a fairly accurate 
model was developed. The 1.8% self-covariance core are 
single-valued, efficient, anonymous, and weak positive 
homogenous shifts that are solution vectors and their 
multipliers of the thermostatic control problem. The drag 
coefficients and wind profiles could lead to irregular 
compressor cooling, irregular and localised ambient 
temperatures. It is also a challenge to be able to trace the 
principle of “constant safety factor” in thermostatic 
adaptive response to photo-electro-mechanical stimuli. 
This is so because neither the photo-electro-mechanical 
receptor nor the signal transduction process is well 
understood.  

Moreover, shielding thermostat from heat-
producing appliances is a good optimal load 
management practice because incorrect temperature 
measurements by thermostats make air conditioners 
overwork and burn their motors as a result. 
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