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ABSTRACT 
The battery is the primary power source of 

electrified vehicles (EV). Prediction of battery 
performances with digital models is essential for both 
the R&D stage and real-world operation. However, the 
battery model developed in the R&D stage is not suitable 
for all real-world conditions, and it will be good if it can 
be optimized online. This paper proposes an Online 
Double-layer System Identification (ODSI) scheme to 
calibrate a battery model for State-of-Health (SoH) 
prediction with measured data. To determine the unified 
settings for the base battery model, the ODSI scheme 
firstly conducts robust optimization in the lower layer 
based on offline particle swarm optimization (PSO). It 
then incorporates a deep convolutional neural network 
(DCNN) to the base model to enable knowledge transfer 
from offline optimization to online adaption for SoH 
prediction under different working conditions. By 
reducing the size of the learning dataset, the study 
indicates that the proposed scheme has high robustness 
of uncertainty management. Besides, the ODSI scheme 
saves the computation resource by avoiding training 
from scratch. 
 
Keywords: Intelligent Energy system; Battery digital 
modelling; System Identification; Particle swarm 
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1. INTRODUCTION 
Modern transportation is moving towards the 

electrification of vehicles in order to reduce the 
dependence on fossil fuels. The battery plays a significant 
role in the power source of electrified vehicles. 
Particularly, the lithium battery is popular in the 

automotive industry because of its notable dynamic 
performances[1][2]. With the trend of digitalization in all 
engineering fields, digital modelling of the lithium 
battery is widely researched[3][4].  

For battery modelling, three types of battery models 
are studied[5], [6]: 1) the electrochemical-based model; 
2) the mathematical-based model, and 3) the equivalent 
circle based model. The electrochemical model mainly 
focuses on the internal working mechanism of the 
battery. Computational fluids dynamics and thermal 
propagation calculations are needed for a typical 
electrochemical model[5], this causes a bulky workload 
in battery control applications. For the mathematical 
models of battery, large amounts of the experimental are 
needed for numerical regression of the physical 
behaviors[7]. Thus, for convenience and flexibility, the 
equivalent circle model is often chosen for digital 
modelling applications. According to recent research[3], 
the second-order RC equivalent circle model (SECM) (as 
known as the two RC models) is valid and chosen as the 
battery plant model for control applications. In SECM 
modelling, multiple factors need to be modified to 
represent the actual features of the battery[5]. 
Modelling modification and calibration are widely 
researched by different parameter identification 
approaches[8]–[10].  

For the practical automotive engineering 
applications of lithium batteries, one of the factors that 
cannot be ignored is the degradation problem[11], [12]. 
Typically, this problem is assessed using the state of 
health (SOH) of the battery for two reasons: 1) increase 
of the internal resistance. 2) loss of capacity[13]. Since 
the internal resistance cannot be measured directly, 
regular battery aging evaluation uses model-based and 
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data-driven methods. The former depends on significant 
empirical experiences; the latter can be achieved 
efficiently by machine learning[14].  

However, for the complex automotive engineering 
environment, digital models of batteries are 
continuously developed from scratch, which requires 
significant computation resources. Then for the end-of-
life problem, more data will be dealt with manually in the 
prediction process. In this paper, a double layer battery 
identification system is constructed to address this 
demand. For the battery PI, this approach only deals with 
the battery performance of voltage and current. Then for 
SOH prediction, the performance data of the battery is 
obtained from the digital model and used as the input for 
battery cycle testing for learning and evaluation.   

The rest of this paper is organized as follows: Section 
2 demonstrates system structure including the lower 
layer adaptive PSO modelling optimization and the upper 
layer CNN model of battery SOH prediction. Section 3 
presents the experimental setup. Section 4 presents the 
results and the discussion. The conclusion is made in 
section 5.  

2. THE MECHANISM OF THE DOUBLE-LAYER 
STRUCTURE  
The structure of this system consists of an upper 

layer and a lower layer. The upper layer is a battery 
digital model with a PSO-based PI optimization. The 
lower layer is a battery SOH prediction model with a 
DCNN structure for real-time prediction. 

2.1 The digital model of the battery  

Based on the existing research[3], [10], a second-
order equivalent circle model (SECM, known as two RC 
model) is chosen as the battery plant model. The 
governing equation of two RC models illustrated by 
figure 1 are listed in Eq.1. 

𝑈𝑜 = 𝐼𝐿𝑅𝑜

𝑈𝑠 =
𝐼𝐿

𝐶𝑠
−

𝑈𝑠

𝑅𝑠𝐶𝑠

𝑈𝑙 =
𝐼𝐿

𝐶𝑙
−

𝑈𝑙

𝑅𝑙𝐶𝑙

𝑈𝑡 = 𝑈𝑂𝐶𝑉 −𝑈𝑠 − 𝑈𝑙 −𝑈𝑜  }
 
 

 
 

   (1) 

 

where 𝑅𝑜  is Ohm resistance, 𝐶𝑠  and 𝑅𝑠  are equivalent 
capacitance and equivalent resistance for the short-term 
performance (activation polarization). 𝐶𝑙  and 𝑅𝑙  are for 
the long-term performance (concentration polarization).  
𝐼𝐿 is current, and 𝑈𝑂𝐶𝑉 is the open circle voltage. 

 From the suggestion of [5], this SECM can be further 
modified considering the SoC variation. The general 
battery equation is shown as Eq.2. 

Ccap = X1

Voc = X2 exp(X3Vsoc) + X4 + X5Vsoc + X6Vsoc
2+ X7Vsoc

3

Rseries = X8 exp(X9Vsoc) + X10
Rshort = X11 exp(X12Vsoc) + X13
Cshort = X14 exp(X15Vsoc) + X16
Rlong = X17 exp(X18Vsoc) + X19
Clong = X20 exp(X21Vsoc) + X22 }

 
 
 

 
 
 

   (2)  

 

where X1 to X22 are defined by a sensitive analysis[15], 
they are all influenced by the instant SoC level of the 
battery. In this paper, a general battery model is built 
based on eq.1 and eq.2. by MATLAB and Simulink. Then, 
these 22 parameters are optimized for calibrating the 
digital model. 

2.2 The offline PI optimization of battery digital model 

Since the parameters identification for the 22 
dimensions is a large-scale numerical problem[16], the 
PSO is chosen to optimize the model with the 22 
parameters of battery (as eq.2). In this paper, as 
demonstrated in the green part of Fig.2 (Offline layer), 
the recorded current data from pulse charge-discharge 
experiments of the battery is applied as input to the 
digital model. Its corresponding voltage data is used as a 
comparison target for the PI optimization. 
Mathematically, the PI optimization can be described as: 

 
[X1, X2, … X22] = argmin(Jvlt)

s. t.

{
 
 

 
 Jvlt = √

∑ (Vsim−Vref)
2T

i=1

T

X1 ∈ [0.5X1ref , 1.5X1ref ]
…

X22 ∈ [0.5X22ref , 1.5X22ref ]}
 
 
 

 
 
 

        (3) 

 

where the  X1, X2, …X22 are 22 numerical parameters in 
the Eq.2. The   Jvlt is the root mean square error (RMSE) 
between the simulated voltage Vsim  and the reference 
data of voltage Vref .The X1ref  , X2ref  … X22ref  are values 
from the reference for the extraction of Li-ion battery 
mathematical model[5]. The upper and lower limits of 
searching spaces for each numerical parameter are set 
empirically with 50% variations for the reference values. 
With such searching spaces, the PSO is used to optimize 

 

Fig. 1. The second order RC equivalent circle model 
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the parameters in conducting an accurate battery model 
with the smallest RMSE. The particle updating process is 
presented mathematically as : 
 
𝑣𝑘+1 =  𝜔 ∙ 𝑣𝑘  +  𝑐1 𝜖1 ∙  (𝑔𝑏𝑘  − 𝑥𝑘) + 𝑐2 ∙ 𝜖2 ∙ (𝑙𝑏𝑘 − 𝑥𝑘)

𝑥𝑘+1  =  𝑥𝑘  + 𝑣𝑘+1 
}        (4) 

where 𝑣𝑘 is the velocity vector at the k-th (k=1, 2, …j-1, j, 
…) iteration in updating the position of the particles for 
the 22 parameters; 𝑥𝑘 is a 20×22 matrix with 20 group 
sizes and 22 dimensions (X1, X2, … X22 in this paper), this 
matrix represents the positions of all individual particle 
at the k-th (k=1, 2, …j-1, j, …). The 𝜔 is an inertia weight 
factor in controlling the exploration and exploitation; 
𝑐1 = 𝑐2 = 2  are two weighting factors. 𝝐1  and 𝝐𝟐  are 
two random numbers between 0 and 1 in increasing the 
randomness. 𝑙𝑏𝑘represents the local best position found 
by the individual particles; 𝑔𝑏𝑘 is the global best position 
for all particles. The pseudo code of PSO algorithm is 
shown as   

Algorithm 1 The hybrid termination methods in the PSO process  

while k < maximum iterations number  

           for each particle i the swarm do 

              update the best position  𝑥𝑖𝑑 by Equation 1 &2 

              calculate the fitness function   Jvlt 

              update the  𝑝𝑖  & 𝑝𝑔 

           end for  

           if  Jvltfulfills the termination threshold 

              break  

              return  Jvlt , 𝑥𝑖𝑑 , 𝑝𝑖  , 𝑝𝑔 

           end if  

end 

Fig. 3. The pseudo-code of the PSO algorithm 

2.3 The online prediction of the battery SOH 

 Due to the difficulty of direct measuring the internal 
resistance, this paper mainly concentrates on the SOH of 
the capacity loss. When the capacity of the battery drops 
to a particular value (i.e. 80%), the battery is considered 

as the end of life (EOL). Inspired by recent researches 
[17]–[19], a deep convolutional neural network (DCNN) 
is applied in this subsection for the evaluation and 
prediction of the battery’s degradation status.  

In Fig.2, the current, voltage and the Coulomb 
counting of battery (represent the state of charge) are 
the inputs of the DCNN; the output is the instant capacity 
of the discharge phase, which indicates the battery SOH. 
Mathematically, the inputs are expressed by a matrix as: 

 

𝐼𝑛𝑝𝑢𝑡 =

[
 
 
 
𝐼1
𝑘 𝑉1

𝑘 𝐶1
𝑘

𝐼2
𝑘 𝑉2

𝑘 𝐶2
𝑘

⋮   ⋮   ⋮
𝐼𝑡
𝑘 𝑉𝑡

𝑘 𝐶𝑡
𝑘]
 
 
 

𝑡×3

          (5) 

 

where the 𝐼𝑡
𝑘 , 𝑉𝑡

𝑘  and 𝐶𝑡
𝑘  are the tested current value, 

voltage value and coulomb counting value at the 𝑡-th in 
the 𝑘 -th iteration of the charge-discharge test, 
respectively. The matrix is 𝑡 × 3 size, where the 𝑡 is time 
steps for each iterative test, in this paper 𝑡 = 3500. 

As the right part of Fig.2, this DCNN consists of three 
convolution stages and two fully-connected stages. the 
input size is defined as 3500 × 3 × 1 by referencing the 
previous study [18], as Eq.4. In the first convolutional 
layer, the number of filters (kernels) is set as 20, with a 
size of 2 × 1. The stride is set as the size of 1 × 1 and 
padding of [0,0,1,1]. The data then is fed into a batch 
normalization layer to accelerate the calculation speed 
and reduce the gradient vanishing. After the rectified 
linear unit (ReLU), the processed data is into a max-
pooling layer.  

Similarly, the second and third convolution stages 
have 32 kernels and 40 kernels, respectively. For 
convolutional layers with a the same stride size of 3 × 1. 
The rest two fully-connected layers have both 50 layers. 
Finally, after a regression, the single capacity value is 
output. These parameters are set initially from the 

 
Fig. 2. The architecture of online DCNN 
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reference then tuned empirically by an amount of 
experimental simulation in pursuing a trade-off between 
an accurate result with a fast calculation speed. This 
DCNN will be trained by the experimental data first, then 
be implemented into an online application for battery 
SOH estimation. 

2.4 The integration between offline and online 

The architecture of the whole system is shown in 
Fig.4. Based on the content of the previous two 
subsections, an integration is conducted to pass the data 
between the two layers. There will be circulated 
feedback in updating the capacity parameter in the 
battery digital model to generate corresponding voltage 
and state of charge values for the battery as inputs of the 
online layer. With input of current requirements, this 
closed-loop system can predict future capacity variations 
as data of longer time spans being fed.  

3. EXPERIMENTAL SETUP 
In this section, the database is chosen of the 18650 

Li-ion battery from the NASA database [20]. Namely 
B0005, B0006 and B0007. In this database, two kinds of 
experiments are done: 1) Regular charge-discharge cycle 
test, where the battery is charged by a constant current 
(2A) until reached cut-off voltage 4.2V, then discharged 
with 2A current until the voltage reaches 3.2V. 2) Pulsed 
charge-discharge cycle test, where the battery is 
discharged from 4.2V with pulse current 1A for 10 
minutes and rest for 20 minutes.  

Among these, the data of pulsed charge-discharge is 
used to develop the battery digital plant model; the data 
of regular charge-discharge is implemented to train the 
DCNN for the battery degradation evaluation and 
prediction. Finally, the data is applied to validate the 
learning results of the previous two structures. The 
database is implemented as Table. 1 below. 

For the battery SOH prediction model, these three 
experimental data (B0005, B0006 and B0007) are used to 
train the DCNN. As in Table 2, the data ratio is the 
proportion of the data in neural network learning. Three 
sets of data are used to train the network with different 
data ratios. 

Finally, a cross-validation will be conducted to 
explore the robustness of the system. By trimming the 
training data for the DCNN, prediction results of the 
system will be compared with data of battery capacity 
loss from experiments. 

 
Table. 1 Data implementation for different purposes. 

Database items Usage 

Pulsed charge-discharge 2RC model development 

Regular charge-discharge SOH estimation study 

 

Table. 2 Offline learning setup for DCNN SOH estimation. 

Data ratio Database 

0.5 

B0005 B0006 B0007 
0.6 

0.7 

0.8 
 
Table. 3 Cross-validation setup for battery SOH prediction. 

B0005 B0006 B0007 

Learning Validation Validation 

Validation Learning Validation 

Validation Validation Learning 

4. RESULTS AND DISCUSSION  

4.1 Battery digital modelling 

After the PSO optimized relative parameters, the 
voltage performance of the battery model in the pulsed 
discharge simulation is shown in Fig.4. The root-mean-
square error (RMSE) is calculated as 0.0045. This is 

 

 
Fig. 4. The architecture of the double layer system 

 

 
Fig. 5. Performance of voltage comparison for battery modelling 
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considered as an applicable 2RC model in applying to the 
later combined platform.  

4.2 Battery SOH estimation  

In this section, the DCNN is mainly trained and 
tested in having an accurate result of the battery’s 
capacity estimation. Figure 6 a) b) and c) shows the local 
learning results for the DCNN in the ODSI for each 
learning database (B0005, B0006 and B0007). It is 
obtained that in Figure 6 a), the local learning process for 
the B0005 battery database has the most considerable 
fluctuation for the capacity loss estimation. Figure.6 b) 
and c) performance similar learning results. Table 3 
presents the RMSE for learning results of the DCNN as in 
Figure 6. The RMSE of the B0005 database has the largest 
RMSE. However, in B0006 and B0007 databases, the 
performance of this DCNN is rarely influenced by the 
learning data ratio once it is larger than 0.6. The 
estimation results were used in updating the value of 
capacity variation in the digital model of the battery.  

Table.4 Learning and cross-validation result in RMSE  

Data ratio 
RMSE 

B0005 B0006 B0007 

0.5 0.0245 0.0210 0.0156 

0.6 0.0166 0.0154 0.0133 

0.7 0.0185 0.0151 0.0120 

0.8 0.0121 0.0134 0.0115 

 

4.3 Model prediction for cross-validation 

After the local training, the developed platform from 
each battery dataset is used to cross-validate with each 
database. Figure. 7 a), b), and c) demonstrate the results 
of the cross-validation. The system is pre-trained (in 
section 4.1 and 4.2) by three battery databases, 
respectively, then have the prediction comparison with 
each database.  

In figure 7 a), the pre-trained ODSI from B0005, B0006 
and B0007 are validated for the B0005 experimental 
database. It can be obtained that deviations exist 
between the three prediction results and the B0005 
experimental database. The reason is considered from 
two factors: firstly, the 2RC model has its cumulating 
system error due to the dynamic training environment; 
Secondly, the training database of B0005 is considered to 
have more noise and scarce data as training input. These 
may cause the later prediction results to have high 
precision but low accuracy. In figure 7 b), the ODSI pre-
trained by B0007 performs the best accuracy in 

predicting the battery capacity loss. The system pre-
trained by B0006 has the most significant error, and the 

system pre-trained by B0005 is obtained with errors in a 
middle stage. In figure 7 c), all the systems pre-trained by 
the three experimental databases prominently predict 
the battery capacity loss. It is considered that the 
database of B0007 is the most general case for the 
battery degradation of the capacity loss. Overall, the 
ODSI platform shows the ability in predicting battery 
capacity loss by only requiring a current input.  

5. CONCLUSION 
 

This paper presents a new online double layer system 
identification scheme for SOH estimation and prediction 
of the battery, with an experimental study based on 
cross-validation. The conclusions can be made as follows: 

 

Fig. 6. The DCNN learning result for battery SOH estimation for B0007 
validation dataset 
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1. By introducing this ODSI, the battery can be 
modeled during real-time applications. The 
closed-loop mechanism of this system gives 
instant feedback between the 2RC model and 
the neural network, compared to the traditional 
RC model with SOH consideration.  

2. Different to the battery models of the pure 
neural network, the proposed system shows an 
advantage in avoiding a model training from 
scratch. By direct supporting from the 2RC model 
in the offline layer, the online DCNN can save 
calculation time in the health estimation. 

3. Moreover, by feeding more existing data into the 
system, the instant feedback between two layers 
of this ODSI enables the system to further 
predict a capacity loss for battery degradation. 

 
 In the future, this system will be further developed 
into the package level in supporting applications for 
electrified vehicles. However, this online system still 

needs further exploration for the data sensitive 
analysis in avoiding large deviations during its 
working process of the self-feedback loop.  
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