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ABSTRACT
Recent years have witnessed a transition in energy

structure, where large number of electronic devices and
systems are introduced in multiple fields including
industry, academia, commerce, and so forth. Safe and
efficient operations of these systems are critical to
ensure productivity as well as to avoid hazard, which
poses strict demands on fault diagnosis. Most of
traditional methods tend to focus on algorithm design
or certain types of hardware or software flaws under
given operational conditions, thus not suitable for
modern electronic systems that may suffer from a
variety of different faults. In this paper, on top of our
previous work on big data, a systematic way of fault
diagnosis in electric vehicles is put forward, which
covers data processing, feature extraction, model-based
diagnosis, and model fusion. The proposed method is
trained and validated using data from real-world
electric vehicles, which are representative examples of
modern complex systems. Results show a diagnosis
accuracy over 95% can be achieved with a
comprehensive consideration of fault modes under a
variety of operational scenarios. The proposed
algorithm can also be used to indicate key features
leading to faults so that system level upgrade can be
performed accordingly. The design criteria and idea of
the algorithm is also adaptable to other systems or
applications with minor changes.

Keywords: electric vehicles, fault diagnosis, big data,
traffic electrification

1. INTRODUCTION
Electric devices and systems have played significant

roles in industry, academia, commerce, as well as other
related fields. Most of these systems are expected to be
functional for years. However, due to manufacture
imperfection and harsh working conditions, hardware
failures are frequently reported, threating property or
even human life.

To avoid this problem, considerable amount of
efforts have been paid, leading to a variety of fault
diagnosis methods such as model-based method,
quantitative method, and history-based method. Most
of these methods tend to focus on certain features of
the target systems or require fundamental
understanding that is not available in most cases.
Recent developments in big data and artificial
intelligence provide new possibilities for fault diagnosis,
where hidden relationships among usage patterns,
environmental conditions and design flaws can be
clarified. These methods have been pervasively applied
and in this work we focus our analysis on electric
vehicles (EVs) due to their increasing market share as
well as complex design and application scenarios. Early
research work has been reported in [1] where Zhao
developed an algorithm for fault diagnosis on battery
and vehicle levels. Sun [2] introduced information
entropy to detect faulty battery cells. Later research has
been extended to thermal runaway [3] and mechanical
failures [4].

Unfortunately, most of these frameworks are
established based on knowledge of algorithm design
instead of fundamental understanding of issues in fault
diagnosis. In this work, we propose a systematic
method for fault diagnosis in EVs that covers data
processing, feature extraction, model-based diagnosis,
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and model fusion. Feature extraction and model-based
diagnosis are done through joint considerations of
battery level and vehicle level statistical features, risky
operational scenarios, and outputs from three different
models that reveal potential hazards. On top of this,
model fusion is performed through neural network to
combine the pre-processed data such that the resulting
output has less uncertainty. Self-correction is then
introduced to optimize the algorithm towards specific

application scenario. Finally, validation and verification
are done using data from 500 EVs, and a diagnosis
accuracy over 95% can be expected.

The rest of the paper is organized as follows.
Section 2 focuses on data pre-processing and feature
extraction. The proposed model is established and
trained accordingly in Section 3, followed by validation
and verification results in Section 4. In the end, Section
5 concludes the paper.

2. DATA PROCESSING AND FEATURE EXTRACTION

2.1 Data source and pre-processing

Data used in this paper is collected through the
National Big Data Platform of Electric Vehicles in China,
which collects data from EVs in a real-time fashion. By
July 2021, over 5 million EVs from 317 manufactures
have been connected in [5]. In this work, for model
training and validation purposes, data of more than one
thousand vehicles are selected with a joint

consideration of vehicle healthy state, usage history,
location, data quality, as well as a few other factors.
Pre-processing is performed to compensate mistakes
from data collection and to extract useful information
for later model training and algorithm design while
filtering out other items such as VIN number and so
forth.

2.2 Feature extraction and screening

Feature extraction is performed after data pre-
processing to reveal key characteristics that may be
potentially linked with faults in an EV. Some features
can be obvious and easily derivable through simple
calculations whereas others are outputs from more
complicated models or related to extreme working
scenarios. In this work, three models are adopted,
including Shannon entropy model, volatility detection
model, and voltage drop consistency model. Entropy
model detects hidden issues from the perspective of
information, while the other two models focus on
voltage changes. Both model eigenvalues and
secondary indicators, such as life cycle anomaly rate
index and number of monomers, are included. Extreme
working scenarios refer to abusive usage behaviors or
environmental conditions that have been reported to
trigger critical damage or speed up performance
degradation in EVs. In this way, 82 features are selected
for further screening.

From the perspective of algorithm design, adopting
82 features is not practical mainly due to complexity. To
solve this problem, screening is performed based on
how much information each feature carries and
relevance among features. The amount of information
from a certain feature can be quantitively described by
calculating variance of it. According to information
theory, larger variance means more information and
vice versa [6]. Relevance, on the other hand, shows
correlation among features and is calculated as Pearson
correlation coefficient [7]. To ease analysis, we
arbitrarily set boundaries of variance and at Pearson

Fig. 1. Overall structure of the proposed algorithm

Fig. 2. Neural network infrastructure in the proposed
algorithm
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correlation coefficient at 0.1 and 0.8, respectively.
Optimization of these parameters will be included as
part of our future work.

Data normalization is then introduced to handle the
problem where dimensions and dimensional units are
different among the features. Specifically, Z-score
standardization is adopted, which processes the mean
and standard deviation of the original data so that it can
be fitted into a standard normal distribution [8]. The
reason we choose normal distribution is to reduce the
amount of calculation time needed for neural network
in following steps to ensure the proposed algorithm
feasible for real-time applications. After screening,
three types of features are selected as inputs for model
training as listed in Table I.

3. MODEL ESTABLISHMENT AND TRAINING

3.1 Neural network infrastructure

The core of the prediction fusion method is to carry
out a second round of training on the outputs from
each upstream model to obtain a better results of faulty
vehicle diagnosis than using any of these models
individually. Based on this idea, in this work, a neural
network is established on top of Shannon entropy
model, volatility detection model, and voltage drop
consistency model. Since no analysis shall be performed
in time domine, a neural network with linear layer
combination would be an optimal trade-off between
accuracy and complexity.

The overall architecture of the neural network built
in this paper is shown in Fig. 1, which is composed of an
input layer, two hidden layers and an output layer. The
selected features from previous step are adopted as
model inputs. In training process, input, output and
hidden layers allow the neural network to forget or

write new information into memory cells. Nonlinear
transformation is carried out between the hidden layer
and the output layer using Sigmoid function, given as
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where x is the result from previous layer. Sigmoid
function is used as the activation function of neural
network. Its main functionality is to map variables into a
specific value between 0 and 1 and to output the weight
values of fault and normal vehicles. At the end of each
forward pass, prediction result of the neural network is
compared with a label calculated based on real-world
EVs, and the cross entropy loss function is introduced to
optimize the model, expressed as
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where p is the real distribution, q denotes the fitted
distribution, and i the possible value. After each round
of training, the model is upgraded in order to minimize
output from the cross entropy function so that fitting
result q can be as close to the real result p as possible.

3.2 Output as risk score

Although the Sigmoid function can output weight
values from 0 to 1, due to the nature of function itself,
even for a binary classification problem, summation of
weight values could hardly be 1, which fails to meet the
requirements from the perspective of probability.
Therefore, probability conversion is performed to
obtain the probability of each vehicle to be faulty,
which is then converted into a score for better
presentation. In this work, Softmax function is
introduced to perform probability conversion,
expressed as
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where k represents the value of the ith element. In this
model, k is the weight value of 0 and 1, and � ���
represents the sum of ownership weight values. In
other words, it is the ratio of the index of this element
to the sum of all element indexes. In this way, a risk
score can be calculated, which is roughly inverse
proportional to output of the Sigmoid function. As part
of model establishment, a score of 67 is selected in this
work as the global optimization result for validation and
verification.

Table I. Three types of selected features and definitions
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4. RESULTS AND DISCUSSION

To verify accuracy of the proposed algorithm, usage
history data from 600 EVs are used. Vehicles are chosen
randomly from several major manufactures, among
which 21 are faulty whereas the rest 579 are
functioning properly. Output from the proposed
algorithm is illustrated in Fig. 3 and the result for faulty
vehicle identification is given in Fig. 4. As can be seen,
there is a clear boundary between faulty vehicles and

normal ones as score of fault ones tend to allocate
between 69-73 whereas most of normal vehicles get a
score in the range of 27 to 31. The huge margin
between these two ranges actually ensure robustness
of the algorithm and makes it possible to monitor
deterioration of a vehicle as its score increase overtime.

According to the score, 20 out of 21 faulty vehicles
are successfully identified, indicating the ability of the
proposed algorithm to distinguish normal and faulty
vehicles. Due to lack of accident report, it is unable to
come to a conclusion whether the proposed algorithm
has actually misjudged one faulty vehicle. It is possible
that the vehicle become a faulty one because random
events such as traffic accident, which is beyond the
scope of this work. Meanwhile, 6 vehicles are identified
as faulty but still functioning. Unfortunately, we cannot
come to a conclusion whether this is caused by
imperfect algorithm design, or these vehicles are
actually on high risk level. Continuous tracking and
analysis are required for an uncontroversial result.

Overall, the proposed algorithm has successfully
identify most faulty vehicles with an accuracy rate over
95%.

5. CONCLUSION
In this work, a systematic method for fault diagnosis

has been put forward, which jointly considered 82
possible factors that may lead to critical damage in an
EV. Shannon entropy model, volatility detection model,
and voltage drop consistency model are included to
derive hidden information from measured I-V curve
while EVs are in use. On top of these, a neural network
is established based on the idea of model fusion to
obtain a better diagnosis result than using any of the
three models individually. Validation is performed using
data from 600 real-world EVs, and an accuracy over 95%
is achievable. The design principle of the proposed
algorithm can be extended to fault diagnosis in complex
systems other than EVs.
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Fig. 3. Risk score from the proposed algorithm

Fig. 4. Faulty vehicle identification result
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