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ABSTRACT 
 This study employs machine learning techniques – 
random forest and extra trees - to predict the frictional 
pressure gradient during convective condensation in an 
inclined in-tube heat exchanger. The experimental data 
matrix (663) includes conditions for saturation 
temperatures of 30, 40, and 50oC, mass velocity 100-400 
kgm-2s, quality 10-90%, and thirteen inclination angles 
between -90o and +90o for a smooth tube of an internal 
diameter of 8.38 mm. Based on statistical analysis, the 
extra trees outperforms the random forest. The average 
deviation (AD) and mean average deviation (MAD) are 
2.88% and 6.72%, respectively, for random forest (RF) 
and 0.25% and 2.97%, respectively, for extra trees (ET). 

Keywords: Frictional pressure gradient, inclination angle, 
inclined smooth tube, condensation, machine learning  

NOMENCLATURE 

Abbreviations 
d diameter (m)  
Fr Froude number 
g gravitational acceleration (ms-2) 
G mass velocity (kgm-2s-1) 
𝑑𝑃

𝑑𝑧
pressure gradient (Pam-1) 

T temperature (oC) 
x quality (-) 
X input vector (-) 
Symbols 

𝛽 inclination angle (o) 

𝜌 density (kgm-3) 
Subscripts 
l liquid 
sat saturation 
v vapour 

1. INTRODUCTION
The study of the pressure gradient is imperative in

the heat exchange devices used in the process, chemical 
and thermal industries, heating, ventilation, and air 
conditioning (HVAC) systems, nuclear, and the oil and gas 
industries due to its implication for the systems’ power 
requirements.  A high pressure gradient is undesirable 
because it increases the required power, size, and weight 
of the heat exchange system. Today, an efficient system 
design focuses on improving efficiency and decreasing 
size and weight.  

The study of the thermal-hydraulic characteristics of 
two-phase flow in inclined smooth and enhanced tubes 
has increased considerably in the past two decades due 
to their applications in industrial V- and A-frame heat 
exchangers; automobiles moving downhill and uphill; 
during take-offs, landing, and banking of air transport 
vessels [1-3].  

Several studies have attempted to predict pressure 
gradients in horizontal and vertical flows using empirical 
models [4-6]. Only very few studies considered inclined 
flows [7,8]. Liu et al. [7] developed flow pattern-based 
correlations to predict the frictional pressure gradient in 
tilted smooth tubes. Shaahid et al. [8] experimentally 
investigated the frictional pressure drop of oil-water flow 
at different inclination angles. Furthermore, Adelaja et 
al. [2,9] experimentally studied the frictional pressure 
drop of HFC134a in inclined smooth and enhanced tubes 
but did not develop predictive models.  
Soft computing techniques such as machine learning 
have been proposed as predictive and optimization tools 
for the future. Machine learning has the advantage of 
rapid computation and accuracy over other modeling 
and optimization tools. Studies showed that these tools 
had been deployed to predict the heat transfer 
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coefficient more often than the pressure drop [10]. 
Furthermore, the literature has shown few studies on 
pressure drops in inclined tubes. A brief review of the 
application of machine learning tools for pressure 
gradient prediction is presented here. Cebi et al. [11] 
used an artificial neural network (ANN) to predict friction 
factors in smooth and microfin tubes subjected to 
cooling, heating, and isothermal conditions. Noori Rahim 
Abadi et al. [12] employed an adaptive neuro-fuzzy 
inference system to predict and optimize the pressure 
drop and heat transfer coefficient in smooth inclined 
tubes. It was concluded that the numerical model by the 
same authors performed better than the ANFIS. Hughes 
et al. [13] compared several flow pattern-based models 
with three machine learning models (support vector 
regression, random forest regression, and artificial 
neural network) to predict heat transfer coefficient and 
pressure drop. They concluded that the random forest 
algorithm gave the best prediction. However, the dataset 
comprised mostly horizontal tube flows. Cepeda-Vega et 
al. [14] employed the generalized additive model (GAM) 
to predict the pressure drop in two-phase flow for 
different inclination angles. However, the inclination 
angles were scattered and depended on the data sets of 
various works. The R2 and mean relative errors obtained 
were 99.1% and 12.93%, respectively. The performances 
of four machine learning algorithms - Bayesian Neural 
Network (BNN), random forest (RF), artificial neural 
network (ANN), and support vector machines (SVM) -  
were evaluated based on their abilities to predict the 
pressure drop of Herschel-Bulkley fluid flowing through 
the annulus. RF and BNN gave the least mean absolute 
errors of 2.57% and 3.2%, respectively [15].  

From the literature above, it has been shown that 
the application of machine learning techniques 
compared with flow pattern-based models has proven to 
be better tools for the prediction of two-phase flow 
processes in inclined tubes. Though RF has been applied 
to predict frictional pressure drop in horizontal and 
slightly inclined tubes, to the best of the authors’ 
knowledge, the two techniques have not been used for 
tubes tilted at the inclination angles of ±90o, ±60o, ±30o, 
±15o, ±10o, ±5o and 0o. Therefore, this paper aims to 
apply and evaluate RF and ET when predicting the 
pressure gradient during convective condensation in 
inclined flows for all ranges of inclination angles.     

 
2. EXPERIMENTAL SETUP AND PROCESS  

2.1 Test facility described 
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Fig. 1 The sketch of the experimental test setup 

 
A detailed description of the test facility can be found 

in earlier publications of the authors [1-3,9,16]. In this 
section, a brief explanation of the test rig is done—the 
test facility comprised a vapour compression cycle with 
the compressor's high-pressure line separated into two. 
One consisted of the pre-condenser, test section, and 
post-condenser, while the second led to the bypass line. 
The bypass line helped regulate the amount of 
refrigerant hence the mass flow rate through the test 
section. The test condenser was connected to two 
flexible pressure hoses, which enabled it to tilt between 
horizontal and vertically upward or downward to change 
the direction of the flow accordingly. Two sight glasses 
were situated at the tube inlet and outlet of the test 
condenser to view the flow distribution. A high-speed 
camera was positioned at the outlet sight glass through 
which the flow pattern was captured. The pre-condenser 
allowed the refrigerant vapour quality to be altered 
before entering the test condenser. The post-condenser 
enabled the two-phase flow to be fully liquid and 
subcooled before entering the electronic expansion 
valve. Other components were as can be found in a 
typical refrigeration cycle. A computerized data 
acquisition (DAQ) system collected and stored data from 
measuring equipment such as pressure transducers, 
thermocouples, and Coriolis flow meters.  

2.2 Experimental test matrix 

The experimental data comprises condensation 
frictional pressure gradient data for mass velocities of 
100 to 400 kgm-2s-1, mean vapour qualities of 10 to 90%, 
saturation temperatures of 30 – 50 oC, and 13 inclination 
angles (±90o, ±60o, ±30o, ±15o, ±10o, ±5o and 0o).  
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3. MACHINE LEARNING TECHNIQUES  
Numerous machine learning techniques have proven to 
considerably minimize the high variance obtainable 
when using the regression techniques; however, RF and 
ET are used for this study. The two techniques work on 
the same principle, and the significant differences 
between them are: 
(i) RF uses bootstrap replicas, i.e., subsets of the training 
data with replacement. In contrast, ET uses the whole 
original sample, i.e., takes a random subset of data 
without replacement. 
(ii) RF chooses the optimum split in selecting cut points 
to split nodes, while ET chooses it randomly. 
(iii) ET is a relatively recent machine learning technique 
with a faster execution time. 

3.1 Data preparation 

This study has 663 original data rows with ten features 
(i.e., nine input features with one output feature) for 
training an RF. From this, bootstrapped sample sets were 
drawn. Each bootstrapped sample was further employed 
to grow an unpruned regression tree. Segregating the 
data into training and testing datasets was avoided, but 
the train-test-split method was adopted. Following the 
train-test-split step, only a minute number of randomly 
sampled M predictors were chosen as split candidates. 
The above procedure was repeated until N number of 
trees were grown. Aggregating the prediction of the N 
trees gave rise to the prediction of the new data defined 
as: 

𝑓𝑅𝐹
𝑁 (𝑿) =

1

𝑁
∑ 𝑇𝑗(𝑿)𝑁

𝑗=1     (1) 

where X depicts the vectored input parameter, N is the 
number of trees, and 𝑇𝑗(𝑿) is a single regression tree 

formed based on a subset of input parameters and the 
bootstrapped samples. Fig. 2 depicts the Random forest 
regression procedural tree. The input parameters are the 
saturation temperature Tsat (oC), mass velocity G (kgm-2s-

1), mean quality xm (-), inclination angle β (o), acceleration 
due to gravity g (ms-2), tube inner diameter, d (m), 
superficial gas Froude number Frsv (-), liquid density ρl 
(kgm-3) and vapour density ρv (kgm-3). The output is the 
pressure gradient (Pam-1)    

4. RESULTS AND DISCUSSION  
The results present the application of the RF and ET 

to predict the pressure gradient obtained from the 
condensation experiment described in section 2. 
Statistical tools, average deviation (AD) and mean 
average deviation (MAD), are employed to evaluate their 
accuracies.   

4.1 Prediction using random forest 

Fig. 3 compares the experiment with the prediction of 
the RF for the pressure gradient against the inclination 
angle for the saturation temperature of 50oC. It reveals 
that for all the vapour qualities, the downward flows, β < 
0o were not well predicted. As the inclination angle 
decreases, the worse the prediction; however, the 
quality of 50% shows the worst deviation.   

4.2 Prediction using extra trees 

Fig. 4 reveals the prediction of the pressure gradient 
using the ET for the same saturation temperature of 
50oC. The ET gives a better prediction than the RF as both 
upward and downward flows are well predicted except 
for the quality of 50%, which has the worst deviation 
during the downward flow.    

4.3 Statistical evaluation of the machine learning 
techniques 

The RF and ET are evaluated using AD and MAD (Eqs. 
2 and 3, respectively). The predictions are plotted against 
the experimental data, as indicated in Fig. 5. The ET 
presents the AD and MAD of 0.25% and 2.97%, 
respectively, while the RF is 2.88% and 6.72%, 
respectively. This clearly shows that the ET performs 
better than the RF for the set of data studied. 

 

𝐴𝐷 =  
1

𝑀
∑ [

(𝛼𝑝𝑟𝑒𝑑−𝛼𝑒𝑥𝑝)×100%

𝛼𝑒𝑥𝑝
]𝑀

1   (2) 

   

𝑀𝐴𝐷 =  
1

𝑀
∑ 𝐴𝐵𝑆 [

(𝛼𝑝𝑟𝑒𝑑−𝛼𝑒𝑥𝑝)×100%

𝛼𝑒𝑥𝑝
]𝑀

1   (3) 

Where M is the number of data points,𝛼𝑝𝑟𝑒𝑑 and 𝛼𝑒𝑥𝑝 

are the experimental and predicted pressure gradients, 
respectively. The regression plots for the two techniques 
are presented in Fig. 6. The R2 value of the test data for 
RF is 0.9423, and for ET, it is 0.9833, meaning that the 
extra trees is better than the RF.  

5. CONCLUSIONS 
In this study, two machine learning techniques 

(random forest and extra trees) are employed to predict 
the frictional pressure gradient during the convective 
condensation of refrigerant inside an inclined tube-in-
tube heat exchanger. The extra trees performs better 
than the Random forest in that it can predict the upward 
and downward flows reasonably well, except for the 
downward flow at 50% vapour quality. However, the 
random forest fails to fairly predict the downward flow 
for all qualities. With an average deviation of 0.25% and 
a mean average deviation of 2.97%, the extra trees 
outperforms the random forest, which has an average  
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Fig. 2 A Random forest regressor with N number of trees and M sampled data 

 

 
 
Fig. 3 Variation of frictional pressure gradient with 
inclination angle for saturation temperature of 50 oC 
using RF 

 
Fig. 4 Variation of frictional pressure gradient with 
inclination angle for saturation temperature of 50 oC 
using ET 

 

 
 
Fig. 5 Experimental data compared with machine 

learning predictions 
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Fig 6. Regression plots for test datasets for a) random 

forest technique and b) extra trees technique 
 

deviation of 2.88% and a mean average deviation of 
6.72%. 
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