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ABSTRACT 
Different fast charging protocols will cause different 

battery aging rates, which will reduce the accuracy and 
robustness of the capacity estimation. To improve the 
robustness and accuracy of battery capacity estimation 
with different fast charging rates, a random health 
indicator and deep learning approach based capacity 
estimation framework is proposed in this paper. First, a 
robust health indicator is proposed to extract the 
relationship between battery charging data and aging 
rate, which is a random charging curve segment consist 
of voltage, current, and charging capacity. Second, a 
deep convolutional neural network is proposed to 
estimate capacity based on the robust health indicator 
with smaller model size, and the field model can be 
quickly obtained by the pre-trained model and transfer 
learning. Finally, the proposed framework is verified by 
the public datasets and experimental datasets with 
different fast charging protocols. The results show that 
even the charging protocols of test data are different 
from that of training data, the average error of capacity 
estimation is within 0.35%. 
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1. INTRODUCTION
The international fossil energy crisis and

environmental pollution continue to increase, making 
the research of clean energy urgent. Lithium-ion 
batteries have become a representative of clean energy 
due to their long cycle life, high energy density, and low 
self-discharge rate. The battery management system 
(BMS) is an intelligent system that monitors and 
manages batteries in real time. Battery capacity is one of 
the key parameters of BMS and is a prerequisite for 
accurate state of charge (SOC) estimation and state of 
health (SOH) prediction [1]. However, the nonlinear 
degradation [2], making accurate capacity estimation 
challenging. 

According to the control theory, the current capacity 
estimation method can be divided into: open-loop 
estimation method and closed-loop estimation method. 
The open-loop estimation method mainly includes: 
empirical model method, physical model method and 
data-driven method [3]. The empirical model method 
uses discrete mathematical models or linear fitting for 
battery capacity estimation, which is low-cost but cannot 
be applied due to the difference between laboratory 
conditions and actual conditions. The physical model 
method includes equivalent circuit model and 
electrochemical model, this method relies on an 
accurate battery model which is difficult to obtain. The 
data-driven method mainly realizes capacity estimation 
through nonlinear modeling of charge-discharge 
features and capacity, which has high accuracy and good 
generalization. However, it involves too many 
parameters and is an open-loop estimation with poor 
robustness. Closed-loop estimation is mainly a fusion of 
different open-loop estimation methods. For example, 
the capacity estimation method based on data-driven 
and empirical model proposed by Zheng et al., which is a 
cooperation of cloud platform and vehicle BMS [4]. 
However, the effect of different fast charging protocols 
on battery capacity decay is rarely studied. A robust 
health factor is crucial for battery capacity estimation [5], 
but battery fast charging protocols vary with applicable 
scenarios. To this end, a health indicator and deep 
learning enabled capacity estimation framework is 
proposed in this paper. The proposed health indicator 
can effectively characterize the battery ageing rates at 
different charging protocols. And the deep learning and 
transfer learning enabled framework of pre-trained 
model to field model helps the model quickly adapt to 
different scenarios. 

2. PROPOSED METHOD

2.1 Robust health indicator 

The health indicator proposed is a 2D indicator 
composed of current, voltage, and capacity, and the 
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schematic diagram of the health indicator generation is 
shown in Fig. 1. 

As can be seen in Fig. 1, the proposed health 
indicator is a two-dimensional (2D) format input. The 
current is used to characterize the current feature, the 
voltage is used to characterize the voltage interval 
feature, and the capacity is used to characterize the 
charging rate feature. To further improve the robustness 
of the proposed health factor, a moving window is used 
to segment the charging curve. As shown in Fig. 1, the 
red line represents the current, the black line represents 
the voltage, the blue line represents the charging 
capacity, the window length represents the window 
width, and the stride represents the step between 
adjacent windows. 
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Fig. 1. Schematic diagram of the health indicator 
generation 

2.2 Deep convolutional neural networks 

Deep convolutional neural networks (DCNNs) are 
widely used in data feature extraction, which usually 
consists of convolutional layers, pooling layers, nonlinear 
function layers, and fully connected layers. Convolutional 
layers perform feature extraction on the input data using 
different mathematical forms of filtering. The pooling 
layer further maximizes or averages the extracted 
features. Non-linear functions are used to preserve the 
extracted features. The fully connected layer uses the 
weighted summation of the extracted features to obtain 
the final regression result. 

The structure of the DCNN consists of 1 input layer, 
3 convolution operations, 1 flatten layer, 2 fully 
connected layers, and 1 regression layer. The 3 
convolution operations include 8 to 32 times of feature 
extraction, ReLU feature preservation, and max pooling. 

2.3 Transferring pre-trained model to field model  

The transfer learning technology can help transfer 
the pre-trained model to the field model, which greatly 
improves the application value of deep learning model. 

Thanks to transfer learning, we can train a pre-trained 
model in laboratory conditions and then get a field 
model. Fig. 2 shows the schematic diagram of transfer 
learning based pre-trained model to field model. 
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Fig. 2. Schematic diagram of transfer learning based 
pre-trained model to field model. 

3. RESULTS AND DISCUSSION  

3.1 Datasets description 

The applied datasets include public datasets of 124 
A123 commercial lithium-iron phosphate batteries [6] and 
experimental datasets of 4 Panasonic NCR batteries.  
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Fig. 3. Degradation of 12 A123 cells: (a) charging to 
discharging protocols; (b) capacity datasets 

All A123 samples were cycled to failure under 
different fast charging protocols, and the charging-
discharging protocols are shown in Fig. 3 (a). First, the 
test samples were charged at the charge rate of C1, then 
charged to 80% capacity at the charge rate of C2, and 
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finally charged to full capacity at 1 C under constant 
current-constant voltage (CCCV). After the batteries 
were fully charged, the test cells were discharged at a 
current of 4 C, and the cycle was repeated to battery 
failure. The data used for pre-trained model training 
were the first 12 cells in the third group of 48 cells and 
the capacity data is shown in Fig. 3 (b). The experimental 
data of No. (5-12) batteries were selected as training 
datasets, and the experimental data of No. (1-4) 
batteries were test datasets.  
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Fig. 4. Degradation of 4 commercial NCR cells: (a) 
charging to discharging protocols; (b) capacity datasets 

4 Panasonic NCR batteries were cycled to failure 
under different charging protocols and mix drive cycles. 
As can be seen from Fig. 4 (a), the 4 NCR batteries were 
firstly charged at CCCV of rate C1. Second, the batteries 
were relaxed for 30 min to eliminate the polarizing 
reaction inside the cells. Third, all the test samples were 
discharged under mix drive cycles. Finally, the batteries 
were relaxed for 30 min again and be ready for the next 
charge-discharge cycle. The capacity curves of 4 NCR 
batteries are shown in Fig. 4 (b), and the datasets were 
used for field model training. 

3.2 Parameters optimization 

The hyperparameters of capacity estimation 
approach are important to the performance of proposed 
capacity estimation approach. The hyperparameters 
finally determined is shown in Table 1, and then the 
robustness, application value of the random health 

indicator and the generalization of proposed DCNN can 
be guaranteed. 

Table 1. Detailed hyperparameters of the proposed 
approach 

Parameter name Parameter value 

window length 100 

stride 5 

Image input Input size: [100,3,1] 

convolutional2d-1  
Filters size: [5,2]; Filters number: 

8; Padding: same 

Batch normalization 1000 

Relu-1  

Max Pooling2d-1 
Pool size: [5,2];  
Padding: same 

Convolutional2d-2  
Filters size: [5,2]; Filters number: 

16; Padding: same 

Batch normalization 1000 

Relu-2  

Max pooling2d-2 
Pool size: [5,2];  
Padding: same 

Convolutional2d-3  
Filters size: [5,2]; Filters number: 

32; Padding: same 

Batch normalization 1000 

Relu-3  

Fully Connection Output size: 1 

Regression   

3.3 Evaluation  

To verify the robustness, generalization, and 
accuracy of proposed capacity estimation approach, 
experimental datasets of 12 cells with different charging 
protocols were selected for pre-trained model training. 
The datasets of cell No. (5-12) were selected as the 
training data, and the datasets of cell No. (1-4) with 
random health indicators were the test data. The 
capacity estimation results of pre-trained model are 
shown in Fig. 5. 

Due to the random health indicator reason, we 
trained the model 30 times and got a best case and a 
worst case. As can be seen from Fig. 5, the average error 
of the capacity estimation results is within 0.35% which 
verified the robustness and accuracy of the proposed 
approach. To further prove the application value of 
proposed approach in real drive cycle, we transferred the 
pre-trained model to field model by transfer learning 
technology, and the results are shown in Fig. 6. The 
average error of best case was 0.15% and the average 
error of the worst case was 2.2%, which proved the 
application value of proposed approach. Furthermore, 
we found that charging data shows a higher correlation 
with capacity degradation when voltage is higher than 
3.5 V, so the capacity estimation is recommended to 
begin at the charging interval of voltage above 3.5 V. Due 
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to the limitation of 4 pages, further evaluation would be 
performed on the final manuscript. 
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Fig. 5. Capacity estimation results of cell 1: (a) capacity 
curve; (b) relative error. 
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Fig. 6. Capacity estimation results of NCR no.2: (a) 
capacity curve; (b) relative error. 

4. CONCLUSION  
This paper proposed a capacity estimation 

framework for lithium-ion batteries based on random 
health indicators and deep learning approach. A 
robustness health indicator was proposed firstly, which 
was a 2D format input consist of current, voltage, and 
capacity. With the robustness health indicator to extract 
the relationship between battery charging rate and aging 
rate, the capacity can be estimated under different 
charging protocols. Then, a DCNN was proposed to fit the 
nonlinear relationship between the health indicator and 
battery capacity, and the hyperparameters were 
thoroughly discussed and optimized. Finally, the transfer 
learning enabled framework of transferring pre-trained 
model to field model was introduced to improve the 
application value of proposed approach. The proposed 
approach was evaluated by the public datasets of 12 
A123 cells and experimental datasets of 4 Panasonic NCR 
batteries with different charging to discharging 
protocols. The average error of the worst capacity 
estimation case is within 0.35%. The results verify the 
robustness, generalization, and accuracy of proposed 
approach.  

In future work, the closed-loop capacity estimation 
and internal short circuit detection for lithium-ion 
batteries module will be our main research object. 
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