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ABSTRACT
Hydrogen energy provides an approach to

addressing the energy crisis and global climate change.
However, additional energy consumption and carbon
emission in the conventional storage process of H2

tackle the hydrogen economy's prosperity. Metal-
organic frameworks (MOFs), new type materials with
exciting structures and properties, represent a blueprint
for realizing large-scale applications of hydrogen energy
by lowering energy consumption and cost of facilities.
Traditional hydrogen storage MOFs have stepped to an
advanced level, and the discovery inevitably slows
down. Materials are fundamental to low-cost hydrogen
storage, and the screening and design of H2 storage
MOFs are crucial for the hydrogen economy. We aim to
propose a novel paradigm of hydrogen storage MOFs
material design that combines machine learning and
first principles calculation, such as density functional
theory (DFT). By constructing an active learning
framework and using DFT calculation results as training
data, a self-improving model that can screen existing
material databases and guide experiments design is
obtained. The prediction model's performance is
examined in conventional ways (root mean square
error, coefficient of determination, etc.) and will be
further tested in practical considerations (test the
performance of MOFs guided by the model).
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NONMENCLATURE
Abbreviations
AI Artificial Intelligence
DFT Density Functional Theory
DNN Deep Neural Network
HF Hartree Fock
ML Machine Learning
MOF Metal-Organic Framework
RF Random Forest

1. INTRODUCTION
Hydrogen energy, with environmental-friendly

chemical reactions and high calorific value, is regarded
as the most promising candidate for fossil fuels.
However, expensive storage and separation of
hydrogen tackle large-scale hydrogen applications. The
key to alleviating the cost lies in the novel, high-
performance materials. Metal-Organic Frameworks
(MOFs) are a type of material with novel structures and
interesting properties. Many pioneers have proved
MOFs’ capability in hydrogen storage [1], but there is
still a gap between current performances and
application demands. As comparatively simple MOFs
have been investigated, MOFs’ complexity and high
experimental costs slow down the discovery of MOFs
for hydrogen storage. Thoroughly Screening the
enormous MOFs’ design space by conventional research
paradigm (i.e., trial and error) is impossible both in time
and finance.

Hence, AI (artificial intelligence) for science, an
emerging interdisciplinary research paradigm, should be
considered. With its inherent capability in analyzing
massive high-dimensional data, AI has been a powerful
assistant to scientists, especially machine learning (ML).
ML accelerated discovery of materials has been a hot
topic recently [2]. Nevertheless, debates over the
interpretability of ML models, especially deep learning,
have not stopped yet, making someone prudent toward
pure data-driven methods.

When it comes to matter and chemistry, compared
with machine learning models, widely-used theoretical
methods are based on solid theory or contain more
physics, which makes them more persuasive to material
scientists. Meanwhile, booming computation power
turns ‘ab initio’ or first principles calculation of large
systems into truth. Among the various methods, density
functional theory (DFT) distinguished itself with
accuracy near post-Hartree Fock (post-HF) and cost
close to Hartree Fock (HF). DFT dominates in the
calculation for periodic systems at the electronic
structure level and is suitable for MOFs. Among the
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three methods mentioned before, experimental
methods are the most expensive but most accurate; ML
models reach comparatively high accuracy with low
cost, while theory calculation methods stand in the
middle, shown in Figure 1A. Herein, a three-stage
paradigm can be proposed in Figure 1B: ML models
screen through the massive MOFs’ database (CoRE MOF

[3], about 10k) and pick out the candidates (about 100);
DFT calculation predicts the high-performance MOFs
through specific parameters (e.g., hydrogen absorption
enthalpy); several MOFs are synthesized and test at the
last stage. Up to now, we have finished the first stage
and believe the output will be satisfied.

Fig. 1 the logic and framework of this work. A: a comparison of accuracy and cost among three methods. B: an
illustration of a three-stage discovery of MOFs for hydrogen storage.

2. METHODS

2.1 Deep Neural Network (DNN)

DNNs, as a machine learning algorithm, can achieve
optimized results by adjusting the weights of each layer.
In general, DNNs with more than one hidden layer have
been shown to surpass conventional and statistical
models in various applications [4]. The application of
deep learning to the materials field is attracting more
and more attention, while little research has been
developed to make suitable predictions for hydrogen
adsorption using a data-driven approach via deep
learning. In this work, a four hidden layers DNN is
trained and applied.

2.2 Random Forest (RF)

RF models are a subset of decision trees. Decision
tree models are inherently better than ‘black-box’
models in interpretability because a series of logic tests
is contained. A decision tree model use nodes to classify
features, and the branches indicate which features are

selected. Too big a decision tree size is prone to
overfitting, severely reducing the model’s
generalizability. RF models [5] use ensemble techniques
to prevent overfitting.

2.3 Density functional theory (DFT)

DFT is based on the Hohenberg-Kohn theorems,
which prove that all the ground state properties of a
many-electron system are determined by electron
density distribution [6] (i.e., density functionals). By
selecting appropriate electron density, the state with
minimum energy is the ground state, and corresponding
properties are easily attained. Generally, the total
energy in DFT contains three parts: kinetic energy,
exchange-correlation energy, and classic coulomb
potential energy. Limited by the absence of accurate
kinetic energy functionals, today’s DFT is Kohn-Sham
DFT [7], which introduces atomic orbitals into DFT and
collects the uncertainty in the exchange-correlation
part. For hydrogen storage using MOFs, an empirical
model has shown that the optimized enthalpy of



dissociation is about 22-25 kJ/mol [8] under practical
conditions. We will use a cluster model (about 200
atoms scale) to describe the combination and
dissociation of MOFs and hydrogen. At this scale,
double hybrid functionals are incredibly time-
consuming, and pure functionals lack enough accuracy.
We plan to use the classic functional B3LYP-D3(BJ) [9,
10] and 6-31G** [11] because van der Waals forces are
very critical in the combination between MOFs and
hydrogen. For MOFs containing heavy atoms,
pseudopotential will be applied to specific atoms.

3. RESULTS
Our DNN is trained with 137 MOF's data points

reported by previous works shown in Table S1 in the
Supporting Information, using pore diameter, surface
area, pore volume, temperature, and pressure as the
input variables, respectively. Then, the DNNs with an
implicit relationship between the structural properties
and hydrogen adsorption is employed to predict the
possible hydrogen adsorption capacities of MOFs.

Meanwhile, we use the RF model to measure the
relative importance of input features on the MOFs'
hydrogen storage capability. The results show that
Brunauer-Emmett-Teller (BET) surface and pore volume
are the most critical intrinsic parameters, as Figure 2
shows.

Fig. 2 The relative importance of input features on the
hydrogen storage using RF model.

The most critical hyper-parameters in the DNN
model, including max iteration during training and
learning rate, were constantly adjusted by the grid
search method with the R2 score [12]. The best model
with the highest R2 score was selected. Meanwhile, the
RF model was also optimized by adjusting the number
of trees ranging from 50 to 500 and the number of
features from 1 to 5 with a step size of 1. The hyper-
parameters corresponding to the best-performing
models were selected and used to validate models with
5-fold cross-validation, respectively. The predicted

outputs in the test groups plotted versus the
corresponding experimental values with the two models
are shown in Figure 3. The overall MSE values and R2

score values (0.989) developed by the DNN algorithm
show that DNN has high accuracy, and the prediction
ability of the DNN model for gas adsorption has been
proved in previous studies. On the contrary, the MSE of
the RF model was higher than that using the DNN
model. Such results demonstrate that DNN is superior
to RF in predictive accuracy.

Fig. 3 Comparison of predicted hydrogen storage and
experimental data using DNN (right) and RF (left) model

with 5-fold cross validation.

4. CONCLUSIONS
We proposed a three-stage discovery strategy of

MOFs for hydrogen storage, and the first step has been
implemented. Nevertheless, there are some drawbacks
of current works: limited to experimental costs, data
from public literature is far lower than an ideal amount,
which may cause overfitting and decrease the ML
models’ reliability; experimental conditions in hydrogen
storage are very complex. Thus, DFT calculation should
consider parameters such as solvation effects and
ambient temperature (DFT’s results are at 0K in
default). In order to overcome small samples’ harm,
novel ML methods can be applied, such as active



learning. Other simulation methods, such as molecular
dynamics, can also be a powerful tool. Although there is
much to improve, we believe this paradigm is rational
and correct.
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1. Data collection
(1) Tabulated data

Serial
Number

BET surface
area/(m2/g)

pore
volume/(cm3/
g) Qst/(kJ/mol)

Pressur
e/bar Temp/K

gravimet
ric
hydroge
n
storage/
wt% Reference

1 1560 0.696 6.63 1 77 2.51 Inorg. Chem. 2011, 50, 5044
2 1560 0.696 6.63 40 77 4.14 Inorg. Chem. 2011, 50, 5044
3 1560 0.696 6.63 100 298 0.46 Inorg. Chem. 2011, 50, 5044

4 1490 0.605 7.24 1 77 2.36
Cryst. Growth Des. 2011, 11,
5064–5071

5 2847 1.01 9.5 1 77 2.4 J. Am. Chem. Soc. 2008, 130, 1833
6 1660 0.667 6.56 1 77 2.27 Inorg. Chem. 2011, 50, 5044
7 782 0.39 8.3 1 77 1.77 J. Am. Chem. Soc. 2006, 128, 1304

8 2300 1 7.3 1 77 2.1
J. Am. Chem. Soc.
2007, 129, 15740

9 2300 1 7.3 45 77 5.7
J. Am. Chem. Soc.
2007, 129, 15740

10 1670 0.68 6.3 1 77 2.59
Angew. Chem., Int.
Ed. 2006, 45, 7358

11 1670 0.68 6.3 20 77 4.02
J. Am. Chem. Soc. 2009
131, 2159

12 2247 0.89 5.3 1 77 2.52
Angew. Chem., Int.
Ed. 2006, 45, 7358

13 2247 0.89 5.3 20 77 6.06
Angew. Chem., Int.
Ed. 2006, 45, 7358

14 2932 1.14 5.4 1 77 2.24
J. Am. Chem. Soc. 2009
131, 2159

15 2932 1.14 5.4 20 77 6.07
J. Am. Chem. Soc. 2009
131, 2159

16 2929 1.142 5.71 1 77 2.63
J. Am. Chem. Soc. 2009
131, 2159

17 2929 1.142 5.71 20 77 6.51
J. Am. Chem. Soc. 2009
131, 2159

18 2929 1.142 5.71 60 77 7.78
J. Am. Chem. Soc. 2009
131, 2159

19 2387 0.898 5.77 1 77 2.52
J. Am. Chem. Soc. 2009
131, 2159

20 2387 0.898 5.77 20 77 5.4
J. Am. Chem. Soc. 2009
131, 2159

21 1855 0.798 6.34 1 77 2.29
J. Am. Chem. Soc. 2009
131, 2159



22 1855 0.798 6.34 20 77 4.5
J. Am. Chem. Soc. 2009
131, 2159

23 1822 0.767 6.7 1 77 2.26
J. Am. Chem. Soc. 2009
131, 2159

24 1822 0.767 6.7 20 77 4.46
J. Am. Chem. Soc. 2009
131, 2159

25 2960 1.22 5.68 1 77 2.64Chem.—Eur. J. 2009, 15, 4829
26 2960 1.22 5.68 55 77 5.43Chem.—Eur. J. 2009, 15, 4829
27 2930 1.19 6.21 1 77 2.56Chem.—Eur. J. 2009, 15, 4829
28 2930 1.19 6.21 48 77 5.47Chem.—Eur. J. 2009, 15, 4829
29 1407 0.67 6.8 1 77 2.34Chem. Mater. 2008, 20, 3145
30 1407 0.67 6.8 3.5 30 6.84Chem. Mater. 2008, 20, 3145
31 1407 0.67 6.8 45 300 0.25Chem. Mater. 2008, 20, 3145

32 2500 1.012 7.2 1 77 1.95
Chem.
Commun. 2010, 46, 4196

33 2500 1.012 7.2 32 77 5.31
Chem.
Commun. 2010, 46, 4196

34 2500 1.012 7.2 97 77 6.88
Chem.
Commun. 2010, 46, 4196

35 2300 1.08 7.1 1 77 2.1
Chem.—Eur. J. 2010,
16, 14043

36 2300 1.08 7.1 60 77
5.53,7.8
6

Chem.—Eur. J. 2010,
16, 14043

37 2300 1.08 7.1 61 298
0.399,0.
980

Chem.—Eur. J. 2010,
16, 14043

38 2357 1.113 6.9 0.95 77 1.64
Cryst. Growth Des.
2010, 10, 3405

39 2357 1.113 6.917,31 77 3.98
Cryst. Growth Des.
2010, 10, 3405

40 2357 1.113 6.9 31 77 4.6
Cryst. Growth Des.
2010, 10, 3406

41 3000 1.36 6.36 1 77 2.25
Angew. Chem., Int.
Ed. 2010, 49, 5357

42 3000 1.36 6.36 33 77 6.24
Angew. Chem., Int.
Ed. 2010, 49, 5357

43 3000 1.36 6.36 90 298 0.667
Angew. Chem., Int.
Ed. 2010, 49, 5357

44 4118 2.35 7.3 1 77 1.4Chem. Commun. 2011, 47, 9995
45 4118 2.35 7.344,60 77 5.6Chem. Commun. 2011, 47, 9995
46 4118 2.35 7.3 60 77 9.2Chem. Commun. 2011, 47, 9996

47 3989 2.173 8.14 1 77 1.7
Inorg. Chem. 2011, 50,
10528–10530

48 3989 2.173 8.14 60 77 5.22
Inorg. Chem. 2011, 50,
10528–10530

49 3394 1.38 5.8 1 78 2.42Chem.—Eur. J. 2011, 17, 11162
50 3394 1.38 5.833,60 78 5.6Chem.—Eur. J. 2011, 17, 11162
51 3394 1.38 5.8 60 78 7.5Chem.—Eur. J. 2011, 17, 11163
52 4000 1.63 6.22 1 77 1.79Angew. Chem., Int.



Ed. 2010, 49, 5357

53 4000 1.63 6.22 45 77 6.65
Angew. Chem., Int.
Ed. 2010, 49, 5357

54 4000 1.63 6.22 90 298 0.785
Angew. Chem., Int.
Ed. 2010, 49, 5357

55 5109 2.13 6.09 1 77 1.87
Angew. Chem., Int.
Ed. 2010, 49, 5357

56 5109 2.13 6.09 50 77 7.32
Angew. Chem., Int.
Ed. 2010, 49, 5357

57 5109 2.13 6.09 90 298 1.01
Angew. Chem., Int.
Ed. 2010, 49, 5357

58 2970 1.25 5.9 1 78 2.39Chem.—Eur. J. 2011, 17, 11162
59 2970 1.25 5.930,60 78 5.1Chem.—Eur. J. 2011, 17, 11162
60 2970 1.25 5.9 60 78 6.7Chem.—Eur. J. 2011, 17, 11163
61 6143 2.82 6.1 1 77 1.82Nat. Chem. 2010, 2, 944
62 6143 2.82 6.156,70 77 9.95Nat. Chem. 2010, 2, 944
63 6143 2.82 6.1 70 77 16.4Nat. Chem. 2010, 2, 945
64 2620 1.07 4.15 1 77 2.5Chem. Commun. 2011, 47, 4487
65 2620 1.07 4.15 20 77 6Chem. Commun. 2011, 47, 4487
66 2100 0.795 10.1 1.2 77 2.2 J. Am. Chem. Soc. 2006, 128, 16876
67 2100 0.795 10.1 90 775.1,6.9 J. Am. Chem. Soc. 2006, 128, 16876
68 2100 0.795 10.1 90 298 0.94 J. Am. Chem. Soc. 2006, 128, 16876
69 2750 1.15 5 20 77 4Chem. Eur. J. 2011, 17, 1837
70 2750 1.15 5 20 117 1.8Chem. Eur. J. 2011, 17, 1837
71 1350 0.56 5.96 1 77 2.14Chem. Commun. 2011, 47, 8304
72 1350 0.56 5.96 20 77 3.84Chem. Commun. 2011, 47, 8305
73 1514 0.66 6.65 1 77 2.31Chem. Commun. 2011, 47, 8306
74 1514 0.66 6.65 20 77 4.44Chem. Commun. 2011, 47, 8307
75 922 0.38 7.1 1 77 1.98Adv. Mater. 2005, 17, 2703
76 268 0.113 6.12 1 77 1.34Chem. Commun. 2008, 44, 359
77 2590 1.05 7.74 1 77 1.68Chem.—Eur. J. 2008, 14, 8812
78 2590 1.05 7.74 70 774.87,10 Chem.—Eur. J. 2008, 14, 8813
79 1630 0.64 4.5 1 77 1.27Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 10186
80 1630 0.64 4.5 55 77 3.01Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 10187
81 1630 0.64 4.5 1 77 1.3 J. Phys. Chem. C 2007, 111, 16131
82 1630 0.64 4.5 30 77 3.3 J. Phys. Chem. C 2007, 111, 16132
83 1630 0.64 4.5 60 298 0.13 J. Phys. Chem. C 2007, 111, 16133
84 512 0.203 6.2 1 77 1.04 Inorg. Chem. 2011, 50, 403
85 802 0.3 5.6 1 77 0.92 J. Am. Chem. Soc. 2007, 129, 9604
86 792 0.33 7.1 1 77 1.74Adv. Mater. 2005, 17, 2703
87 792 0.33 7.6 1 77 2Adv. Mater. 2005, 17, 2704
88 3670 1.52 7.05 1 77 1.79Chem.—Eur. J. 2011, 17, 7251
89 3670 1.52 7.05 90 778.1,11.0 Chem.—Eur. J. 2011, 17, 7252
90 3670 1.52 7.05 90 2980.5,1.19 Chem.—Eur. J. 2011, 17, 7253
91 922 0.38 6.9 1 77 1.94 Inorg. Chem. 2005, 44, 810



92 268 0.113 6.1 1 77 1.34 J. Phys. Chem. C 2008, 112, 17443
93 268 0.113 6.1 20 77 1.91 J. Phys. Chem. C 2008, 112, 17443
94 1407 0.67 6.8 1 77 2.34 J. Am. Chem. Soc. 2007, 129, 12368
95 1407 0.67 6.8 3.5 30 6.84 J. Am. Chem. Soc. 2007, 129, 12369
96 1407 0.67 6.8 45 300 0.25 J. Am. Chem. Soc. 2007, 129, 12370
97 1931 0.91 7 1 77 2.55 J. Am. Chem. Soc. 2007, 129, 12371
98 1931 0.91 7 3.5 30 7.89 J. Am. Chem. Soc. 2007, 129, 12372
99 1931 0.91 7 45 77 5.23 J. Am. Chem. Soc. 2007, 129, 12373

100 2300 1 7.3 1 77 2.1Angew. Chem.,Int. Ed. 2008, 47, 4144
101 2300 1 7.3 45 77 5.7Angew. Chem.,Int. Ed. 2008, 47, 4145
102 1239 0.62 6.1 1 77 2.18Eur. J. Inorg. Chem. 2010, 3701
103 1154 0.62 4.5 50 77 3.6 J. Am. Chem. Soc. 2008,130, 6119
104 1154 0.62 4.5 65 298 0.35 J. Am. Chem. Soc. 2008,130, 6120
105 1154 0.62 4.5 60 200 1 J. Am. Chem. Soc. 2008,130, 6121
106 1507 0.75 6.8 1 77 2.48 J. Am. Chem. Soc. 2011, 133, 17532–17535
107 1507 0.46~7 1 77 1.44 Inorg. Chem. 2011, 50, 1743
108 1507 0.75 6.8 1 77 2.27 Inorg. Chem. 2011, 50, 1744
109 1507 0.75 6.8 10 77 3.6 Inorg. Chem. 2011, 50, 1745
110 1630 0.64 4.5 1 77 1.27Science 2010, 329, 424
111 1630 0.64 4.5 55 77 3.01Science 2010, 329, 425
112 1630 0.64 4.5 1 77 1.3 J. Am. Chem. Soc.2007, 129, 14176
113 1630 0.64 4.5 30 77 3.3 J. Am. Chem. Soc.2007, 129, 14177
114 1630 0.64 4.5 60 298 0.13 J. Am. Chem. Soc.2007, 129, 14178
115 783 0.39 8.3 1 77 1.75 J. Am. Chem. Soc. 2011, 133, 17532–17535
116 950 0.39 8.3 26.1 77 2.21 J. Am. Chem. Soc. 2006, 128, 726
117 870 0.39 8.8 30 77 2.8 Inorg. Chem. 2009, 48, 3882.
118 792 0.33 7.1 1 77 1.74 Inorg. Chem. 2005, 44, 810.
119 2885 1.18 4.8 1 77 1.15Nature 2004, 427, 523.
120 2100 0.795 10.1 1 77 2.1 J. Am. Chem. Soc., 2006, 128, 16876.
121 2100 0.795 10.1 90 77 6.9 J. Am. Chem. Soc., 2006, 128, 16877.
122 2100 0.795 10.1 90 298 1.4 J. Am. Chem. Soc., 2006, 128, 16878.

123 792 0.33 7.1 1 77 1.74Adv. Mater., 2005, 17, 2703; Chem.–Eur. J., 2005, 11, 3521.

124 922 0.38 6.8 1 77 1.98Adv. Mater., 2005, 17, 2703; Chem.–Eur. J., 2005, 11, 3522.
125 1239 0.62 6.1 1 77 2.18Adv. Eng. Mater. 2006, 8, 293
126 1507 0.75 6.8 1 77 2.48 J. Am. Chem. Soc. 2006, 128, 1304
127 802 0.3 4.31 1 77 0.93 Inorg. Chem. 2008, 47, 7936, Langmuir 2009, 25, 503
128 676 0.34 5.96 1 77 1.23 Inorg. Chem. 2008, 47, 7936, Langmuir 2009, 25, 504
129 837 0.33 4.99 1 77 1.45 Inorg. Chem. 2008, 47, 7936, Langmuir 2009, 25, 505
130 988 0.39 4.51 1 77 1.54 Inorg. Chem. 2008, 47, 7936, Langmuir 2009, 25, 506
131 813 0.32 4.46 1 77 1.42 Inorg. Chem. 2008, 47, 7936, Langmuir 2009, 25, 507
132 382 0.15 4.45 1 77 0.75 Inorg. Chem. 2008, 47, 7936, Langmuir 2009, 25, 508
133 400 0.16 7.5 1 77 1.12 Inorg. Chem. 2008, 47, 7936, Langmuir 2009, 25, 509



134 526 0.19 7.2 1 77 1.46 Inorg. Chem. 2008, 47, 7936, Langmuir 2009, 25, 510
135 558 0.21 6.35 1 77 1.6 Inorg. Chem. 2008, 47, 7936, Langmuir 2009, 25, 511
136 509 0.2 6.65 1 77 1.51 Inorg. Chem. 2008, 47, 7936, Langmuir 2009, 25, 512
137 163 0.07 7 1 77 0.54 Inorg. Chem. 2008, 47, 7936, Langmuir 2009, 25, 513




