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ABSTRACT 
 Time Series (TS) analysis is a hot topic in Data Mining 
community. Currently, the detection of the operation 
state in energy system often relies only on human 
judgment or even on-site inspection. But TS analysis can 
help automatizing this task and has become attractive in 
the energy field. In this paper, we propose a method for 
detecting and recognizing system operating pattern 
based on change points and complex network features. 
We first explain how the change point detection method 
can be applied in different pipeline operation scenarios. 
The results obtained by this method can help TS to 
segment subsequences and extract shapelet. Then, the 
shapelet are transformed into the form of visibility 
graph. The structural features of such TS graphs 
corresponding to different operating patterns of the 
system are extracted. Finally, we validate the graph 
feature-based representation method on datasets from 
an oil pipeline system in China. We compare it with 
statistical features-based representation baseline 
method for classification tasks. The results show the 
interpretive and accuracy of our proposed method. The 
method could be a basis for intelligent detection and 
recognition in the field of energy systems. 

Keywords: time series, change point detection, visibility 
graph, structural features.  

NONMENCLATURE 
Abbreviations 
CS Candidate shapelets 
DTW Dynamic Time Warping 
DP Distance profiles 
MP Matrix profiles 
RS Representative shapelet 

SCADA Supervisory Control and Data 
Acquisition 

TSC Time series classification 
Symbols 
a The average shortest path distance 
Aij The adjacency matrix 

Cp The local clustering coefficient 
d(s,t) The shortest path from s to t 
E(G) The average global efficiency 
G The network graph 
h The threshold 
K The degrees of nodes  
L The length of the shapelets 
m The total number of edges 
md The length of Tg-shapelet 
n The number of nodes 

ni 
The total number of neighboring 
nodes of node i 

nd The length of T’g 
ns The total number of CS 
nt The length of T 

N The set of all nodes in the complex 
network graph 

Q Modularity 
r Assortativity coefficient 
t1, t2, …, tx, tnt The different time series data 
T The time series 
Tg The Subsequences 
v The drift 

1. INTRODUCTION
Analysis and discussion of time series data plays an

increasingly important role in applications in science and 
society [1]. One of these is time series classification (TSC), 
which helps one to quickly and accurately identify 
anomalous patterns that may arise in practical 
applications. The interpretive of the classification results 
is a challenge in dealing with the classification task. 
Traditional TSC methods can be classified as distance-
based methods, dictionary-based methods, feature-
based methods and shapelets, each of which has its own 
merits in classification applications, but all suffer from 
weak interpretive. Therefore, it is worth discussing how 
these methods can be used or improved to obtain better 
interpretive classification results. 

Distance-based methods. Standard distance 
measures are Euclidean Distance (ED) and Dynamic Time 
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Warping (DTW). Other popular time series distance 
measures include modified Hausdorff (MODH) [2], edit 
distance with real penalty (ERP) [3] and Longest Common 
Sub-Sequence (LCSS) [4]. DTW has the advantage of 
handling unequal length time series data [5], and one 
nearest neighbour (1-NN) using DTW distance is shown 
to be very hard to beat on many datasets [5-7]. However, 
these distance-based TSC methods are usually not 
interpretable. 

Dictionary-based methods. Methods such as 
Symbolic Aggregate approXimation (SAX) [8], Piecewise 
Aggregate Approximation (PAA) [6] reduce the original 
sequence dimension by converting the sequence to 
some symbols [9]. Then, the similarity measure is built on 
comparing the encoding sequences of time sequences. 
The development of this method allows traditional data 
analysis techniques to be applied to the field of time 
series. However, how to determine the time window 
length and how to develop a better way for subsequence 
representation still requires continuous research and 
discussion. 

Feature-based methods. Sequences are classified by 
extracting global features and constructing classifiers. 
Typical global features include statistical features such as 
mean, variance and slope, or time-frequency domain 
features (e.g peak and frequency) [10, 11]. However, one 
disadvantage of these features for practical problems is 
that the same statistical features may correspond to 
different time series. The better classification results 
shown by this method may rely heavily on strong 
classifiers (e.g. SVM, Adaboost, Random forest, etc.) 
rather than better global features [12]. Moreover, the 
method also lacks interpretability in a practical sense. 
Therefore, better ways of time series representation still 
need to be explored. 

Shapelet-based methods. Finding shape information 
for describing sub-time series. This method proposed by 
Ye and Keogh [13] and are applied in TSC. However, as 
every shapelets candidate is compared to a set of TS, the 
computation complexity could be huge. Therefore, most 
studies focus on how to compensate for the shortage 
and reduce the number of shapelet candidates [14, 15]. 
However, it is undeniable that the method has been 
widely adopted due to its reliability and interpretive. 

In this paper, we propose a time series classification 
method based on shapelet and graph structure features. 
Our work is a hybrid TSC approach which combines 
shapelet and feature based methods. However, prior to 
shapelet extraction, Change Point Detection (CPD) can 
detect state shifts or anomalous states in a time series. 
This last is also the basis for segmentation of the time 
series. To this end, we leverage the Cumulative Sum 
algorithm (CUSUM) [16]. Then, we exploit an existing 

shapelet extraction method [17]. It consists of three 
major steps: (1) calculating distance profiles, (2) 
calculating matrix profiles and (3) constructing 
representative shapelet sets. Afterwards, we introduce 
the visibility graph algorithm, which can convert shapelet 
into the form of graph (i.e. time-graphlet). It is intended 
to represent the shapelet by means of graph domain 
features. Meanwhile, the set of representative shapelet 
can also be filtered again based on the converted time-
graphlets. The number of candidate shapelet is reduced 
by removing shapelet with the same graph structure. In 
particular, complex network graph structure features are 
employed to embed time-graphlet for representation. 
The method reduces the dimensional of the 
subsequence into a spatial feature vector. Finally, a 
classification model is used to classify the time series for 
recognition. we compare our proposed method with a 
feature-based methods and apply on real oil pipeline 
system in China. In summary, the main contributions of 
this work are as follows: 

1. The CUSUM method based on change point 
detection is employed to assist in the segmentation 
process of time series and gives better performance of 
anomaly detection than Isolation Forest. 

2. The feature representation method, based on a 
complex network graph structure, enhances the 
interpretive of shapelets for different categories by 
embedding the physical information propagated behind 
the data. 

3. For operational data of oil pipelines, 
classification results based on graph structure features 
are more accurate than those based on statistical 
features. 

The rest of the paper is organized as follows. In 
section 2, we briefly describe the CUSUM algorithm to 
identify the change points. In section 3 we show the 
details of constructing time-graphlets. The section 4 
mainly describes the demonstration scenario and 
discussion. The final section summarizes the work in this 
paper and indicates future research directions. 

 
2. DETECTION OF OPERATING STATE CHANGE POINTS  

2.1 Change Point Detection 

The cumulative sum algorithm is the classical 
technique used to detect change points in univariate 
time series [16]. The method is based on probability 
density ratios and has no restrictions on the distribution 
and smoothness of the time series data [18]. The method 
detects change points in a time series by calculating 
whether the cumulative sum of positive changes (𝑔𝑔𝑡𝑡+) 
and negative changes (𝑔𝑔𝑡𝑡− ) in the time series data (t) 
exceeds a threshold (h). When (𝑔𝑔𝑡𝑡+) or (𝑔𝑔𝑡𝑡−) exceeds h, an 
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alarm is raised and the cumulative sum is reset [19]. The 
detection process of the CUSUM algorithm is defined as 
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Where, h is the threshold value of the cumulative 
sum. When h increases, false alarms decrease. v is the 
drift parameter, which is set to avoid false alarms or slow 
drift. By increasing v, the false alarm rate can be reduced, 
but at the cost of delayed detection. Here, h and v are 
two parameters that determine the effectiveness of the 
algorithm. Their purpose is to weigh up the number of 
true and false alarms, and a suitable value can improve 
the precision of the detection. 

2.2 Metrics 

We use the time period corresponding to the real 
event as a comparison group to evaluate the detection 

results of the above two methods separately. We applied 
four metrics to evaluate the anomaly detection results: 
accuracy (acc), recall (rec), precision (prec) and F1 value 
[1]. 

= + + + + ( ) ( )acc TP TN TP FP FN TN        (2) 

= + ( )prec TP TP FP               (3) 

= + ( )rec TP TP FN               (4) 

× +=1 2( ) ( )prec rec prec recF         (5) 

Where TP is the number of correctly predicted 
activities, TN is the number of correctly non-predicted 
activities, FP is the number of predicted activities that do 
not match the true labels, and FN is the number of 
activities presenting in training dataset yet absent in 
predictions. 

3. RECOGNITION OF OPERATING PATTERNS  
The process of operating pattern recognition can be 

divided into three parts: extraction of shapelet, 
construction of graphlets and feature characterization. 
The relationship between these three parts is illustrated 
in Fig. 1. Below, we describe in detail each one of the 
above steps.  

 
Fig. 1 The methodological framework for graph feature-based operation pattern recognition 

 

3.1 Shapelet extraction 

For a given time series T, after segmenting it using 
the change point detection method, we can extract the 

shapelet representing different categories from different 
subsequences. Below, we describe each part of the 
extraction process. The full process of shapelet 
extraction is shown in Fig. 2. 
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Fig. 2 The process of shapelet extraction 

 
 

Definition 1. (Time series). The time series (T) is the 
historical operating data of the oil pipeline system. T = 
{t1, t2, t3, …, tnt}, where nt is the length of T. 

Definition 2. (Subsequence). Subsequences (Tg), Tg = 
{tj, …, tk}, where k < n and j > 1. The length of Tg is based 
on the results obtained by the change point detection 
method. 

Definition 3. (Shapelet). Shapelet are defined as 
subsequences that can be used to describe the 
operational state of the system for a small period of time. 
The length of shapelet is the variable in the case of 
Section 4.2. 

Definition 4. (Candidate shapelet). It represents all 
sub-sequences, which are selected according to the 
length of the shapelet. The time step is a regular duration 
(e.g. 1s) in order to avoid missing any run states. All 
subsequences in each target subsequence are extracted, 
thus forming the set of candidate shapelet (CS), CS = {CS1, 
CS2, CS3, …, CSns}, where ns is the total number of 
candidate shapelet. 

Definition 5. (Distance profiles). Distance Profiles 
(DP) describe all distances between candidate shapelet 
and new shapelet in the unknown subsequence, which 
are measured using the DTW method: DP = {DP1, DP2, 
DP3, …, DPnd−md+1}, nd is the length of T’g, md is the length 
of Tg−shapelet. 

For illustration, Fig. 3 takes a shapelet in a known 
subsequence and calculates the distance between each 
unknown T’g−shapelet and Tg−shapelet in turn, and records all 
distances in the distance profile. 

 

 
Fig. 3 Diagram of the distance profiles calculation 

 
Definition 6. (Matrix profiles). Matrix profiles (MP) 

are vectors that record the shortest distance for each of 
the distance profiles, describing the Tg−shapelet with the 
highest similarity to the T’g−shapelet: MP = {MP1, MP2, 
MP3, …, MPnd−md+1}. 

Definition 7. (Representative shapelet). The 
Tg−shapelet corresponding to each shortest distance in the 
matrix profiles is the representative shapelet that 
characterizes T’g: RS(Tg) = {RS1, RS2, RS3, …, RSnd−md+1}. 

3.2 Shapelets to Graphlets 

In this step, we first create a node for each time 
series data tn. The edge exists between any two nodes (ta 
and tb) if another node (tc) between them satisfies the Eq. 
(7), then, there is an edge between ta and tb. That is, if 
two arbitrary data can be connected by a straight line 
and there are no other data in between, then there is an 
edge between the nodes represented by ta and tb. 
Conversely, there is no edge between two nodes[20, 21].  

< + − − −( )(( ) ( ))c b a b b c b ay y y y t t t t       (6) 

T
Tg'-shapelet

g'

Distance profile
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T
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The construction process of the time-graphlet is 
based on the visibility graph algorithm. The relevant 
processes are defined as follows. 

Definition 8. (Time-graphlet). Time-graphlets are 
defined as time-series complex network graphs whose 
nodes are based on the data trends of shapelet. 

Definition 9. (Shapelet2Graphlet). 
Shapelet2Graphlet is used to describe the process of 
transforming a shapelet into a graphlet with the aim of 
analyzing the operational characteristics of time-series 
data from the perspective of complex networks. 

3.3 Time-Graphlets Embedding 

At this point, we are ready to extract graph structure-
related hidden information represented by 
multidimensional vectors. The idea is to embed each 
graph into the feature parameters of a complex network 
graph. The purpose of using complex network feature 
metrics to characterize the structural features of time-
graphlet is to distil the implicit information of the 
shapelet from multiple perspectives, such as information 
transfer efficiency, connectivity and fault tolerance. 

Meanwhile, we use statistical features based on time 
series as a baseline to compare the impact of the two 
sebsequence representation methods on the TSC results. 
The statistical features used include: mean, median, 
skewness, standard deviation values, variance, 
complexity, fluctuation and absolute energy, as many 
paper usually used [10, 11]. These basic features 
characterize the amplitude information of the 
subsequence. 

Below, we describe in detail each of the feature 
parameters used for graph embedding. 

Definition 10. (Average shortest path length). The 
average shortest path distance (a) can be used to 
measure the average of the shortest distance over all 
node pairs. It characterizes the efficiency of information 
transmission and the fluctuation of data on the network 
[22]: 

∈
= ∑ −

,
( , ) / ( 1)

s t N
a d s t n n           (7) 

where N is the set of all nodes in the complex network 
graph, d(s, t) is the shortest path from s to t, and n is the 
number of nodes in the complex network graph. 

Definition 11. (Assortativity coefficient). The 
assortativity coefficient can be used to characterize the 
connectivity in a time-graphlet based on the assortative 
or heterogeneous network of a given running state [23]: 

δ= ∑ − ∑ −( / 2 ) ( / 2 )ij i j i j i ij i j i j
ij ij

r A K K m K K K K K m K K   (8) 

where m is the total number of edges, Ki and Kj represent 
the degrees of nodes i and j, respectively, and Aij 
represents the adjacency matrix. If r > 0, the network is 

homogeneous. If r < 0, the network is heterogeneous. If 
r = 0, the two nodes are nonlinearly correlated with each 
other. 

Definition 12. (Algebraic connectivity). The 
algebraic connectivity is employed to evaluate the 
connectivity and robustness of the complex network. 
The greater the algebraic connectivity, the less likely the 
time-graphlet is to be divided and the more stable the 
trend of the shapelet. It is expressed as the second 
eigenvalue of the Laplace matrix [24]. 

Definition 13. (Modularity). Modularity can be used 
as a further measure of the connectivity between similar 
nodes in the network [25]. If the modularity is significant, 
it is highly likely that the shapelet does not correspond 
to a particular operational state, and can be used to 
characterize the stability of the shapelet, as a side effect: 

δ= −∑1 ( 2 ) ( , )
2 ij i j i j

ij

Q A k k m c c
m

       (9) 

where δ∑1 ( , )
2 ij i j

ij

A c c  represents the sum of the 

number of edges between similar nodes, and 

δ∑（1 2 ) ( , )
2 i j i j

ij

k k m c c  represents the expected value of 

edges between similar nodes. 
Definition 14. (Local clustering coefficient). The 

local clustering coefficient is used to measure the ability 
of a node to control the propagation of information 
among all its neighboring nodes [26]. The smaller the 
local clustering coefficient of a node, the greater the 
influence of the node: 

( )
=

= − ∑
, 1

1 / 1
N

p p p pq qr rp
q r

A AKC K A       (10) 

where A is the adjacency matrix. p, r, and q represent the 
starting point, process point, and endpoint of an edge, 
respectively, and Kp represents the degree of node p. 

Definition 15. (Average global efficiency). The 
average global efficiency (E(G)) is expressed as Eq. (8) 
[27], which is used to describe whether the network is 
efficient at communicating. 

≠ ∈
= − ∑ ( )( ) 1 ( 1) 1 ij

i j
E G N N d

G
        (11) 

where ijd is the distance between nodes i and j, and 
N denotes the number of nodes in the network G. 

 
4. CASE STUDY 

We collected historical operational data and events 
from the Supervisory Control and Data Acquisition 
(SCADA) system of oil pipeline in China for nine stations 
in March-April 2020 and October-November 2020 (two 
months in total), with a time sampling of 1s. The types of 
parameters collected include inlet and outlet pressure, 



  6 

flow rate, density, temperature, etc. The historical 
events collected include the operation status, action and 
alarm information of the pipeline or equipment at each 
moment. 

4.1 Operational State Detection 

The valve states and pump shutdown are detected 
separately. The object of valve states detect is the 
difference between the inlet and outlet pressure of the 
outlet valve. Considering the delay of the sensor data 
during the states change, the maximum permissible time 
interval is set to 60s. Also, the time interval for adjacent 
change points was set to 3600s to ensure that only 
unique change points occur in each valve opening and 
closing operation, eliminating the influence of adjacent 
points. 

The optimization results of the detection method for 
the two key parameters h and v are shown in Fig. 4. As 
we see, the changes of h have no effect on the accuracy 
and recall. This means that the detection results cover all 
true values. It is observed from the precision 
corresponding to the different parameters that the 
lowest false negative rate is found when h is 0.04 and v 
is 5 × 10−7. Meanwhile, the F1 value exceeds 85.7%, 
which makes parameters combination the optimal 
parameter configuration corresponding to valve status. 

 
Fig. 4 Parameter optimization for valve states 

 
The object of pump shutdown is the difference 

between the inlet and outlet pressure of the pump. 
During the experimental study, we found that the impact 
of 𝑣𝑣 on the results was weak. Then we set the drift to 3 × 
10−4. The labels obtained by logical rules cover more time 
points and indicate a continuous state of operation. In 
contrast, change points are only for certain time points 
where the change is obvious and are more likely to 
detect sudden changes in state. Based on this, we need 

to pay attention to the effect of different time delays on 
the precision of the experiment. 

The optimization results of the detection method for 
the two key parameters h and time delay are shown in 
Fig. 5. The detection accuracy increases with increasing 
time delay. When the time delay is 7h and the h of 
change point is ≥ 0.3, the precision for pump shutdown 
can reach more than 90%, and the F1 value is 0.689, 
which has a low false negative rate and false positive 
rate. It is the best parameter choice for this scenario. 

 
Fig. 5 Parameter optimization results for pump 

shutdown  
 

The detection effectiveness of the two operational 
events was evaluated using the change point-based 
detection method and the isolated forest-based 
detection method respectively, and the results are 
shown in Table 1. The precision of both detection 
methods can reach over 90%, but the change point 
detection method has a higher recall than the isolated 
forest detection method. It means that the false negative 
rate obtained using is lower and the overall performance 
is better (as can be seen by the F1 value). On the other 
hand, when there is a lack of data labels, the results 
obtained from the change point detection method can 
be used as a basis for segmenting time series data. It 
provides more accurate annotation for large and 
complex systems lacking data annotation, or for early 
warning of different operational pattern.  

Table 1 The evaluation results in difference scenarios 

Operational 
event 

Evaluation 
metrics 

Methods comparison 
Change point 
recognition 

Isolation 
forest 

Valve states 

Precision 0.94 0.9 
Recall 0.79 0.53 

Accuracy 0.99 0.99 
F1 0.86 0.67 
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Pump 
shutdown 

Precision 0.91 0.91 
Recall 0.55  0.383 

Accuracy 0.99 0.99 
F1 0.69 0.54 

4.2 Recognition of pipeline operational state  

The valve state of a sub-transmission station in an oil 
pipeline network is used as an example. Three 

classification models, Random Forest (RF), Adaptive 
Boosting (AdaBoost) and Support Vector Machine (SVM), 
are chosen to compare the classification effects of two 
representation methods based on statistical features 
and graph structure features, respectively. The results 
are shown in Table 2.

Table 2. The classification results of valve state 

 

 

 

 

 

It can be seen that the classification accuracy based 
on graph feature is higher than that of the classification 
results based on statistical features. Among them, the 
classification results of the AdaBoost classifier are the 
most outstanding, reaching 98%. This is because there 
may be cases where the subsequence and the statistical 
feature have high similarity, but their corresponding 
operational events are not the same. In practical oil and 
gas pipeline engineering applications, some operating 
conditions do not bring about significant data changes. 
Therefore, the same statistical features do not 
necessarily mean that the operating events are also the 
same for the subsequences corresponding to different 
operating events. However, the graph structure features 
retain the shape characteristics of the original time series 
and also reflect the physical information propagated 
behind the data, so the classification obtained is better. 
On the other hand, the length of the input subsequence 
has a weaker effect on the classification effect. 

 
Fig. 6 Effect of different subsequence lengths on 

classification results 

The best performing AdaBoost classifier was chosen 
to classify the composite-labels. The simultaneous 
occurrence of valve closed and valve internal leakage 
was used as an example. Fig. 6 shows the effect of 
different subsequence lengths on the classification 
results. As can be seen from the figure, the accuracy of 
classification based on statistical features decreases 
substantially when the sub-sequence length exceeds 
240. In contrast, the impact of subsequence length on 
the classification accuracy based on graph structure 
features is weaker, and the accuracy is stable at over 80% 
in all cases. The results further demonstrate the value of 
combining shapelet with complex network theory for 
exploration. 

5. CONCLUSION 
In this paper, we propose a method for the 

representation of shapelets that improve the 
interpretive of TCS: the time-graphlet feature-based 
representation method. The approach is based on 
shapelet and graph feature embedding, both of which 
are interpretable. In particular, we have show that the 
efficient of taking CUSUM algorithm based on change 
point detection as a basis for the process of subsequence 
segmentation is better than isolation forest, especially 
for those time series datasets with incomplete labels. 
The visibility graph algorithm is used to convert shapelet 
into time-graphlets, which largely reduces the number of 
shapelet candidates. The features, which is used to 
evaluate the graph structure and information transfer 
capability of complex network, are adjusted to multi- 
dimensional vectors embedded in time-graphlets. This 
allows the feature vectors hold not only the shape 
characteristics of the original subsequence, but also the 
physical information conveyed behind the data 
sequence. The proposed method is applied to solve the 
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60 0.7734 0.8344 0.6488 0.9 0.989 0.949 
120 0.7771 0.8411 0.6834 0.895 0.987 0.957 
180 0.7811 0.8468 0.6738 0.897 0.988 0.958 
240 0.7809 0.8293 0.6765 0.893 0.988 0.958 
300 0.7810 0.8491 0.6970 0.884 0.988 0.968 
360 0.7740 0.8565 0.6962 0.899 0.989 0.969 
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problem of detecting and recognizing the operational 
state of industrial systems. We have measured that the 
classification results obtained by the graph features 
representation approach is more accurate than use the 
traditional statistics features. 

In future work, we aim at carrying out online 
experiments to enrich the existing dataset and build 
multi-classification models to further improve the 
classification breadth and recognition accuracy of the 
models. Meanwhile, due to the complexity of large 
industrial systems, more feature dimensions describing 
the operating state will be considered, so that complex 
network features can be incorporated into the 
classification study of multivariate time series. 
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