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ABSTRACT 
 Energy costs constitute a significant expense for steel 
plants with electric arc furnaces (EAFs). To reduce energy 
costs, industrial processes actively participate in demand 
response by moving energy-consuming activities to low-
price periods. On the other hand, conventional 
production scheduling mainly cares about the makespan 
via weighing the product demand and inventory. 
However, minimising energy costs and makespan are 
usually conflicting objectives. Therefore, we present a 
multi-objective mixed-integer linear programming 
(MOMILP) model for addressing the production 
scheduling problem of a steel plant with EAFs. The 
Normal Boundary Intersection (NBI) method is used to 
derive an evenly distributed Pareto frontier for better 
evaluating the trade-off between electricity costs 
reduction and the time saving of production completion. 
The effectiveness of the proposed model is 
demonstrated in the case study. 

Keywords: industrial demand-side management, multi-
objective optimisation, production scheduling, steel 
manufacturing 

1. INTRODUCTION
Significant growth in the global end-of-life scrap

availability, as much as more than 500 Mt, will be 
reached in the next 30 years [1]. Melting steel scrap as a 
circular-economy strategy could potentially help 
suppress industrial emissions and resource 
consumption. One promising option for melting recycling 
scraps is steelmaking with the electric arc furnaces 
(EAFs), where electrical energy is used for remelting 
charges of up to 100% to make new steel products [2]. 

Meanwhile, steel manufacturing is recognised as one 
of the most challenging industrial processes for 
scheduling due to the involvement of parallel equipment 
and critical production-related constraints [3]. 
Production scheduling of steel plants is a decision-
making process, where the assignment of resources, 
sequence of production and timing to execute 
production tasks are decided [4]. Enormous advances 

have been seen in production scheduling solutions in 
recent decades with innovations in scheduling models 
and solution methods. The scheduling models can be 
categorised as precedence-based and time-grid-based 
models, or continuous-time and discrete-time models, or 
linear and nonlinear scheduling models. The solution 
methods include mathematical programming methods, 
heuristics and evolutionary algorithms, artificial 
intelligence methods, as well as stochastic optimisation 
approaches for tackling uncertainty [4]. 

However, applying optimisation methods for 
scheduling still face several challenges in practice, such 
as large numbers of coupling constraints and high 
computational burden [4]. Most existing work focuses on 
industrial demand response programs but mainly from 
the perspective of power grid management, while little 
attention has been paid to the industrial production 
processes. In this case, Pedro et al. spearheaded the 
development and continual refinement of the resource-
task network (RTN) for production scheduling under 
energy constraints [5], reducing energy costs by 
participating in the industrial demand-side management 
programs under fluctuating energy prices. Based on this 
work, Xiao et al. extended the RTN models by 
incorporating the EAFs’ flexibilities for further reducing 
energy costs [6]. However, although the above-
mentioned scheduling models achieve the reduction of 
energy costs, they may be more easily affected by the 
disruption caused by unexpected events or result in a 
high overhead burden to steel plants because they 
sacrifice the makespan for cost-saving [7]. 

This paper presents a multi-objective production 
scheduling (MOPS) model for steel plants with EAFs 
considering both electricity costs and production 
completion time. The problem is formulated based on 
the RTN model in [5] as a multi-objective mixed-integer 
linear programming (MOMILP) problem. Specifically, the 
main contributions of this paper include the following: 

(1) The MOPS model is proposed to explore the trade-
off between minimising electricity costs and
completion time.
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(2) Renewable energy sources (RES) are integrated
into the production scheduling framework.
Therefore, more benefits can be earned by
leveraging renewable energy and industrial
demand-side management.

(3) The Normal Boundary Intersection (NBI) method is
adopted for the MOPS model to obtain well-
distributed Pareto solutions. Additionally, the
optimal scheduling solution (OSS) is identified by
applying the Entropy Weight Method (EWM).

2. THE MOPS MODEL FOR STEEL PLANTS WITH EAFS

2.1 RTN-based steelmaking process 

The typical process of steelmaking in the melt shop 
is illustrated in Fig. 1. First, solid metal scraps from 
recycled steel are molten in the EAFs, then further 
processed in the argon oxygen decarburisation (AOD) 
unit to reduce the carbon content. Next, the molten steel 
is refined in the ladle furnace (LF) to give its steel 
characteristics and finally transported to the continuous 
casters (CC) to be cast into slabs which are the final 
products of the steelmaking process [6]. 

Fig. 1 The Scheme of Steel Production Process 

The production scheduling problem is addressed by 
using the discrete-time RTN formulation [5]. The RTN for 
production scheduling of a steel plant is illustrated in Fig. 
2. The RTN model involves two types of nodes: resources
and tasks, as well as two kinds of interactions: discrete
interaction and continuous interaction. The resource
nodes include equipment resources like EAFs, AODs, LFs,
CC1 and CC2; intermediate products such as _s

hEA H

and _d

hEA H , _s

hAL H  and _d

hAL H , _s

hLC H and

_d

hLC H , where s and d denote the intermediate 

product of the specific heat h  located at the transfer 
start and destination, respectively. Final products are 
marked by 1, , HH H , as well as electricity resource as 

EL . The task nodes include production tasks for different 
heats in the first three stages, i.e., _ hEAF H  _ hAOD H

and _ hLF H . The last casting task, which needs a unit 

index in conjunction with the heat group index, is 
represented by 1_ _gCast G CC  and 1_ _gCast G CC . The 

transfer tasks between the stages are like _EA hT H , 

_AL hT H and _LC hT H . Moreover, the network flowchart 

in Fig. 2 shows that processing tasks interact discretely 
with related equipment resources, only consuming the 
resource at the start and releasing it at the end, while the 
production tasks consume the EL  resource 
continuously throughout the production process. 

2.2 Mathematical formulation 

In this section, we integrate the interdependencies 
of the steelmaking process into the MOPS optimisation 
problem by using the RTN model to determine the daily 
schedule of the melt shop in a steel plant. 

The MOPS model considers two objectives, i.e., 
minimisation of electricity costs and production 
completion time. Objective 1 is to minimise the 
electricity costs (EC) as calculated by daily electricity 
purchasing costs minus the profits of selling electricity to 
the grid. The time-varying wholesale electricity tariff Buy

t

is considered as the electricity buying price, and the feed-
in tariff Sell

t is considered constant, shown by Eq. (1). 
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where T  is the efficiency of the transformer 

connecting the steel plant to the external power grid. 
BUY

tP  and SELL

tP  are amounts of energy bought from 

and sold to the power grid at time slot t . 
Objective 2 is to minimise the production completion 

time (CT) as defined by the latest completion time of the 
final products, which are processed in the CC as shown in 
Eqs. (2) and (3). The CT is calculated by the starting time 
of the caster task ( 1)t − , adding the processing time 

i   and subtracting the setup time usetup  [5]. The 

domain of Eq. (3) considers all possibilities of all groups.
Therefore, all groups g and the last stage units u are 

considered with the summation over all the tasks 
belonging to ,g uN . 
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In Eq. (3), 
,

Task

i tI indicates the binary variable representing

whether the task i  starts at time slot t ;   is the 
duration time of every time slot t ; i  is the length (in 

time slots) of the task i . 
Constraints are considered, such as the steelmaking 

process and power balance constraints. The steelmaking 
process constraints are formulated by the RTN model 
from [5] to ensure the sequential steelmaking process, 
incl. resource evolution constraints and task execution 
constraints. Power balance constraints should also be 
respected to prevent violating the power limit of the 
transformer between the steel plant and the utility grid.

EAF LF CCAOD

Scraps Slabs

Electricity flow Material flow

Production process
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Fig. 2 Resource Task Network for Production Scheduling of a Steel Plant 

3. NBI METHOD FOR SOLVING THE MOPS MODEL 
The multi-objective optimisation problem involves 

multiple and conflicting objectives to be optimised 
simultaneously, which can be abstractly represented as 
Eq. (4), whose feasible region is  .  
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The NBI method is widely adopted to obtain an 
evenly distributed Pareto frontier, even with a non-
convex Pareto optimal set [8]. Referring to the NBI 
method, the multi-objective optimisation problem can 
be solved in four steps: (1) normalising objective 
functions; (2) generating evenly distributed points on the 
Utopia line; (3) obtaining the Pareto frontier; (4) 
selecting the optimal scheduling strategy. 

 
Fig. 3 Pareto Frontier for a Bi-objective Problem 

3.1 Normalising objective functions 

Due to differences in dimension and magnitude of 
different objective functions, each of the objective 
functions is normalised in the NBI method as Eq. (5): 
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where ( )*

1 1O   and ( )*

2 2O   represent the optimal value 

by individually optimising ( )1O   and ( )2O   in Eq. (6); 

( )*

2 1O   and ( )*

1 2O   indicates the values of the other 

objective functions at *

1  and *

2 ; ( )iO   represents 

the normalised value of the objective function. As shown 

in Fig. 3, the line connecting the point ( ) ( )( )* *

1 1 2 1,A O O   

and ( ) ( )( )* *

1 2 2 2,B O O   is referred to as the Utopia line. 

 
( ) ( )

( ) ( )

*

1 1 1

*

2 2 2

O Min O

O Min O

 


 

 =


=

 (6) 

3.2 Generating evenly distributed points on the Utopia 
line  

As shown in Fig. 3, the Utopia line AB is divided 

equally to get km  evenly distributed point. Any point 

kP  on this line is expressed as Eq. (7) according to the 

NBI method. 
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where Φ  indicates normalised payoff matrix defined in 

Eq. (8) considering Eq. (5); 1 2[ , ]T =β  is the 

parameterised vector corresponding to different points 
on the Utopia line and satisfies constrains 

1 2 1,21, [0,1]  + =  . 

 
( ) ( )

( ) ( )

* *

1 1 1 2

* *

2 1 2 2

0 1

1 0

O O

O O

 

 

   
 = =  
    

Φ  (8) 

3.3 Obtaining the Pareto frontier  
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A point kQ  corresponding to kP  can be expressed 

as 
 kD= +kQ Φβ n  (9) 

so that k kP Q  is a vector that is perpendicular to the 

Utopia line, where 1 2[ ] [ 1 1]T Tn n= − −=n  is the normal 

unit vector to the Utopia line, starting from the point kP  

and kD  indicates the distance between the points kQ  

and kP . Eq. (9) can be equivalently expanded as Eq. 
(10) considering Eq. (7) and Eq. (8) [9]: 
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When k kP Q  is extended (by increasing 
kD  

gradually from zero) to intersect the Pareto frontier at 
the point 

kQ , a Pareto optimal solution (
kQ ) 

corresponding to 
kP  can be obtained. This can be 

obtained by solving the optimisation problem below: 
 :

k
Obj Max D  (11) 

 

( )

( )

1 2

2 1

1 2 1,2

. .
1, [0,1]

( ) 0; ( ) 0

k k

k k

k k

O D

O D
s t

g h

 

 

  

 

 = −

 = −


+ = 


 =

 (12) 

kQ  can be calculated for each kP  obtained in 

Section 3.2, so that a total number of km evenly 

distributed points can be obtained on the Pareto 
frontier. 

3.4 Selecting the optimal scheduling strategy 

Generally, the scheduler needs to identify the 
optimal scheduling strategy from the Pareto frontier to 
get the desired compromise between each objective. We 
adopt the comprehensive evaluation method to use the 
score ks  for evaluating the k th−  solution on the 

Pareto frontier. The score ks  can be obtained by 

calculating the weighted sum of the normalised value of 
each objective function in Eq. (13). The Pareto optimal 
solution with the maximum 

ks  can be deemed the 

optimal scheduling strategy. 
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where ikf  is the normalised value of the i th−  

objective function for the k th−  Pareto optimal 
solution, with the smaller objective value being assigned 
closer to 1, as shown in Eq. (14); iw  is the entropy 

weight of the i th−  objective function, which is 
calculated by EWM in Eqs. (15) and (16). 
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where 
iE  indicates the entropy value of the i th−  

objective function; m  indicates the amount of Pareto 
optimal solutions considered. 
4. CASE STUDY 

In this section, we present a case study to illustrate 
the effectiveness of the proposed model. We consider 
the daily production scheduling for an EAF steel plant 
producing 12 heats a day. The data of the steel plant is 
generated from a real industrial case in [5]. Electricity 
prices [10] and RES generation profiles [11] come from 
publicly available data. 

The numerical results are presented in Fig. 4, where 
we can see that the 11 Pareto solutions are well-
distributed on the Pareto line by applying the NBI 
method, which contains comprehensive and abundant 
information for deciding the optimal production 
schedule for the steel manufacturing. Furthermore, the 
OSS is identified in Fig. 4 for deciding the final production 
schedule. 

 
Fig. 4 The Pareto frontier of the MOPS problem 

Moreover, the OSS is compared with the results of 
two classical single-objective scheduling approaches, i.e., 
shortest completion time (SCT) and minimal electricity 
cost (MEC). The comparison result is listed in Table 1, 
from which we can see that the EC of the OSS and MEC 
are 62.5% and 68% less than that of the SCT, while the 
RES consumption is 13.81% and 12.97% higher than that 
of the SCT. The reason is that the MEC and OSS both 
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assign the most energy-consuming activities to low-price 
periods and improve local consumption of RES to reduce 
EC. On the other hand, the OSS completes the production 
14% earlier than the MES at the cost of 5.5% higher EC. 
As a result, the risk related to the disruption caused by 
unexpected events and the overhead burden on the steel 
plant could be reduced. 

Table 1 Performance of the results of the SCT and MEC 
models compared to the OSS 

Index SCT MEC OSS 

CT/min 800 1420 1222 
EC/£ 52153 16689.1 19549.09 

RES consumption 43.07% 56.04% 56.88% 

5. CONCLUSIONS 
In this work, MOMILP was formulated for the MOPS 

problem of steel plants with EAFs. The NBI method was 
used to derive well-distributed Pareto solutions, which 
can better evaluate the trade-off between electricity cost 
reduction and the time saving of production completion.  
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