
Energy Proceedings ISSN 2004-2965 

A Hybrid Method of Hourly Electricity Consumption Forecasting for Building 
Cluster Based on PSO-RF

Xiaolin Chu1,2, Peng Wang3, Ruijuan Zhao 4*, Dayong Lv1 

1 School of Financial Technology, Shanghai Lixin University of Accounting and Finance, Shanghai 201209, China 

2 Shanghai Financial Technology Research Centre, Shanghai Lixin University of Accounting and Finance, Shanghai 201209, China 

3 Science and Technology on Electromagnetic Scattering Laboratory, Shanghai 200438, China 

4 School of Economics and Management, Shanghai University of Political Science and Law, Shanghai 201701, China (Corresponding 
Author) 

ABSTRACT 
 Building energy consumption prediction is of great 
significance to realize intelligent decision-making of 
energy system and improve energy efficiency. A random 
forest (RF) prediction model optimized via the particle 
swarm optimization (PSO) algorithm is established to 
forecast the hourly electricity consumption of the 
building cluster consisting of interconnected multiple 
buildings. The accuracy, generalization and robustness 
are taken as evaluation indexes. In the case study, the 
building cluster located in Austin is adopted as an 
example to explore the predicted performance of the 
proposed PSO-RF model in different seasons. The results 
show that the hourly electricity consumption PSO-RF 
model of the building cluster can achieve highest 
accuracy, strongest generalization, and best robustness, 
compared with RF, decision tree (DT), XGBoost, and k-
Nearest Neighbor (KNN) prediction models. Therefore, 
the proposed hybrid model can be used as a reliable tool 
for building cluster electricity consumption prediction 
and energy management. 

Keywords: building cluster, electricity consumption, 
forecasting method, random forest, particle swarm 
optimization algorithm  

1. INTRODUCTION
Building energy consumption is an important

component of total world energy consumption, which 
accounts for about 33% [1]. With the growing increase in 
population, the expansion of buildings, and economic 
growth, building energy consumption is predicted to 
increase at an average rate of 1.5% per year during the 
period to 2040 [2]. Therefore, reducing building energy 
consumption is vital for energy conservation and 
environmental protection. As the building energy 
demand growing, reliable and robust energy 
consumption forecasting is beneficial for planning 

scientific energy, reducing carbon emissions, and 
improving energy efficiency [3]. As an important part of 
building energy planning and management, building 
energy prediction has received widely attention from 
academia and industry. 

The research about building electricity consumption 
prediction mainly focuses on physical models and data-
driven models [4]. Physical models rely on simulation 
tools such as EnergyPlus [5], DEST [6], and eQuest [7] to 
calculate building energy consumption, which are very 
sensitive to boundary conditions and strongly depend on 
expertise. Data-driven models are based on training 
historical data through machine learning algorithms to 
discover patterns and learn to a prediction model. 
Compared with physical models, data-driven models are 
mostly selected to predicting building energy 
consumption due to short computation time and good 
performance under sufficient historical data. 

Most of the existing data-driven studies focus on 
exploring the energy consumption prediction problem of 
individual building by usual machine learning algorithms, 
such as random forest (RF), XGBoost, and decision tree 
(DT) [8]. Prediction models of different buildings (e.g., 
commercial and residential building) are established 
[9,10] considering the prediction time scale [11], 
prediction types [12,13], and evaluation indexes [14]. 
Katsatos et al. [15] use Artificial Neural Networks (ANNs) 
to forecast the energy consumption in the building of 
Regulation Authority of Energy in Athens city. And then, 
the experimental results show that ANNs models present 
a remarkable prognostic ability to predict the energy 
consumption. Feng et al. [16] propose a support vector 
machine (SVM) prediction model forecasting the short-
term load of the microgrid in an offshore oil field, and 
analyze the prediction accuracy under Mean Absolute 
Percentage Error (MAPE). Zhou et al. [17] present long 
short term memory integrated with reinforcement 
learning agents to forecast building next-day electricity 
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consumption, and the strategy can effectively improve 
the prediction accuracy verified by the experiments. 
Wang et al. [18] build a monthly RF prediction model of 
building energy consumption using Coefficient of 
Determination (R2), MAPE, and Mean Squared Error 
(RMSE) as the evaluation indicators. Two academic 
buildings are taken as examples, and the RF model is 
verified with best perform in predicting energy 
consumption compared with regression tree and SVM 
models. 

The building electricity consumption is affected by 
various parameters (e.g., weather condition) and 
perturbed by random events (e.g., sudden climate 
change, monitoring system failure and meter damage), 
Therefore, the robustness of the prediction model 
should to be considered. Robustness refers to the ability 
for a prediction model to resist disturbances in the 
external environment. Researchers measure the 
established electricity consumption prediction model for 
individual building from multiple evaluation 
perspectives. Zhong et al. [19] and Chu et al. [20] use the 
support vector regression (SVR) model with high 
accuracy and generalization as well as robustness for 
building energy consumption prediction and building 
carbon emission prediction. Wang et al. [21] propose 
predicting building energy consumption based on 
stacking model, and validate it in terms of accuracy, 
generalization ability, and robustness. 

However, in current literature, few research efforts 
are dedicated to forecasting the building cluster 
electricity consumption. With the promotion of smart 
grids, collaborative buildings regarded as a building 
cluster can maximize the use of on-site energy and 
increase the flexibility of energy storage systems. 
Therefore, it is important to move the research boundary 
from the individual building level to the building cluster 
level [22]. Walker et al. [23] propose an hourly total 
energy consumption prediction model for the 
commercial building cluster based on machine learning 
algorithms such as RF and ANN, and the accuracy of 
including R2, MAPE, and CV-RMSE as the evaluation 
criteria. The experimental results show that the RF 
prediction model has high accuracy. Furthermore, RF 
model can be enhanced by integrating intelligence 
algorithms and investigated comprehensively with multi 
evaluation indexes. 

To fill this research gap, in this study, the hourly 
energy consumption prediction model of building cluster 
with high accuracy, generalization ability, and robustness 
is propose. The parameters of the RF method are 
optimized by particle Swarm Optimization (PSO) 
algorithm, and PSO-RF prediction model is built to 

forecast the hourly electricity consumption of building 
cluster. In the case study, the PSO-RF model of building 
cluster in Austin is investigated to evaluate the accuracy 
and generalization as well as robustness based on R2, 
RMSE, Mean Absolute Error (MAE), compared with 
several usual machine learning algorithms (i.e., RF, 
XGBoost, DT, kNN). The experimental results show that 
the performance of PSO-RF prediction model is superior 
to other four models in summer, winter, and transition 
seasons. The building cluster hourly electricity 
consumption prediction model is beneficial to optimize 
building cluster energy supply system, which in turn 
enhance the intelligent decision-making process and 
improve energy utilization efficiency. 

This paper is organized as follows. Section 2 gives the 
problem description. In Section 3, a PSO-RF prediction 
model is proposed to forecast building cluster hourly 
electricity consumption. The numerical results from the 
case studies for the proposed PSO-RF prediction model 
compared with four machine learning models under 
multi evaluation indexes in different seasons are 
reported in Section 4. Finally, Section 5 provides the 
conclusions and offers future research directions. 
2. PROBLEM DESCRIPTION  

The purpose of this paper is to establish a building 
cluster hourly electricity consumption prediction model 
and evaluate it with accuracy, generalization capability 
and robustness. Nine influencing factors are identified by 
analyzing relationship with building cluster energy 
consumption, which refers to time series and 
meteorological parameters (i.e., day, week, hour (h), 
temperature ( ℉ ), humidity (%), wind speed (mph), 
pressure (in), dew point (℉), and precipitation (in)). At 
the same time, the building cluster electricity 
consumption has seasonal characteristics. The PSO-RF 
method is proposed to forecast building cluster power 
energy consumption, and is investigated in different 
seasons with multi perspectives of accuracy and 
generalization as well as robustness. 
3. PSO-RF MODEL FOR BUILDING CLUSTER HOURLY 

ELECTRICITY CONSUMPTION  

3.1 RF algorithm 

As a typical supervised machine learning method, 
Ensemble Learning (EL) algorithm accomplishes the 
learning task by building and combining multiple 
learners. RF algorithm is an extended variant of the 
Bagging regarded as well-known parallel EL algorithm 
[24]. The RF algorithm adopts Bootstrap resampling 
technology to randomly draw samples from the training 
sample set in 𝑇𝑇  times with put-back. 𝑘𝑘  random 
features are selected independently at each sample set, 
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and 𝑇𝑇  weak learners are trained based on the DT 
algorithm. In the regression task, 𝑇𝑇 weak learners are 
usually integrated to a strong learner by averaging, and 
then prediction result can be obtained. 

By stochastic selection of sample sets and attributes 
in week learner, the RF model has good generalization 
performance by alleviating the risk of overfitting [25,26]. 
In this paper, the weak learner in RF is trained using the 
CART algorithm (a DT algorithm), which uses the Gini 
index to select features and a top-down greedy 
algorithm to build a tree structure. The regression task is 
divided into nodes based on the principle of minimizing 
R2, and the CART algorithm is suitable for solving the 
prediction problem of large sample size of building 
cluster electricity consumption in this paper. The basic 
steps of the RF model are given as follows. 

(1) The training set 𝐷𝐷 =
{(𝒙𝒙𝟏𝟏,𝑦𝑦1), (𝒙𝒙𝟐𝟐,𝑦𝑦2), … , (𝒙𝒙𝒎𝒎,𝑦𝑦𝑚𝑚)} with 𝑚𝑚  samples 
described by 𝑝𝑝  attributes (e.g, 𝒙𝒙𝟏𝟏 =
�𝑥𝑥11; 𝑥𝑥12; … ; 𝑥𝑥1𝑝𝑝�). 

(2) Using Bootstrap random sampling to form 𝑇𝑇 
training subsets to build weak learner 𝐷𝐷1,𝐷𝐷2, … ,𝐷𝐷𝑇𝑇 
with 𝑚𝑚 samples. 

(3) For each weak learner, 𝑘𝑘 features randomly are 
selected from the original 𝑝𝑝 features. 

(4) For the training subset 𝐷𝐷𝑡𝑡  in the 𝑡𝑡 -th weak 
learner, 𝑇𝑇  decision trees can be obtained by 𝑘𝑘 
features based on CART algorithm. 

(5) The 𝑇𝑇  results can be aggregated averagely to 
obtain derive the final prediction results from 𝑇𝑇 weak 
learners. 

Considering fast convergence and easy 
implementation of PSO algorithm, the parameters 𝑇𝑇,𝑘𝑘 
are optimized by PSO algorithm for electricity 
consumption RF prediction model of building cluster in 
this paper. 

3.2 PSO algorithm 

The PSO algorithm is an intelligent optimization 
algorithm based on swarm intelligence. In the PSO 
algorithm, the candidate solutions of 𝑇𝑇,𝑘𝑘  in the RF 
model are represented by particles. 𝐷𝐷 , 𝐼𝐼  and 𝑆𝑆 
represent the particle dimension, the number of 
iterations and the number of particles, respectively. 
�𝑣𝑣𝑝𝑝𝑠𝑠𝑠𝑠𝑖𝑖 , 𝑙𝑙𝑝𝑝𝑠𝑠𝑠𝑠𝑖𝑖 � denotes the spatial position and flight 

velocity of the 𝑠𝑠-th particle under the 𝑖𝑖-th iteration in 
the 𝑑𝑑-dimensional search space. In the PSO algorithm, 
the particle’s velocity and position are updated by Eqs. 
(1) and (2), respectively. 

𝑣𝑣𝑝𝑝𝑠𝑠𝑠𝑠𝑖𝑖+1 = 𝑤𝑤 ⋅ 𝑣𝑣𝑝𝑝𝑠𝑠𝑠𝑠𝑖𝑖 + 𝑐𝑐1 ⋅ 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑1 ⋅ �𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑖𝑖 − 𝑙𝑙𝑝𝑝𝑠𝑠𝑠𝑠𝑖𝑖 � +
𝑐𝑐2 ⋅ 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2 ⋅ �𝑔𝑔𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡𝑠𝑠𝑖𝑖 − 𝑙𝑙𝑝𝑝𝑠𝑠𝑠𝑠𝑖𝑖 �   ∀𝑠𝑠,∀𝑑𝑑,∀𝑖𝑖    (1) 

𝑙𝑙𝑝𝑝𝑠𝑠𝑠𝑠𝑖𝑖+1 = 𝑙𝑙𝑝𝑝𝑠𝑠𝑠𝑠𝑖𝑖 + 𝑣𝑣𝑝𝑝𝑠𝑠𝑠𝑠𝑖𝑖+1    ∀𝑠𝑠,∀𝑑𝑑,∀𝑖𝑖    (2) 
𝑤𝑤 is the inertia weight, and 𝑐𝑐1 and 𝑐𝑐2 denote the 

non-negative learning factors. 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑1 and 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2  are 
random numbers varying in the range of 0 to 1. In the 𝑖𝑖-
th iteration, 𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑖𝑖  and 𝑔𝑔𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡𝑠𝑠𝑖𝑖  denote the 
individual extreme point of the 𝑠𝑠-th particle in the 𝑑𝑑-th 
dimension and the population extreme point of the 
population in the 𝑑𝑑-th dimension, respectively. 

3.3 PSO-RF model 

In the PSO-RF model, the parameters 𝑇𝑇 and 𝑘𝑘 of 
the CART decision tree in weak learners are optimized by 
the PSO algorithm, and then the prediction results are 
obtained by a random forest composed of 𝑇𝑇  weak 
learners. The specific algorithm process is shown in Fig. 
1. The sample set of building cluster hourly electricity 
consumption is divided into training subset and testing 
subset after data pre-processing. The parameters 𝑇𝑇,𝑘𝑘 
and particles’ velocity as well as position are initialized in 
the PSO-RF model. Based on the training subset, 𝑇𝑇 
weak learners are trained using the CART decision tree 
algorithm with 𝑘𝑘  features, and corresponding 𝑇𝑇 
predicted results are integrated with simple averaging to 
obtain the predictive results. R2 in the PSO algorithm is 
used as the fitness function and the number of iterations 
is the termination condition. When the termination 
condition is not reached, the particles’ velocity and 
position in the PSO algorithm are updated and the fitness 
function R2 is recalculated. At the same time, the number 
of iterations is added one, and the next cycle begins. 
When the termination condition is reached, the 𝑇𝑇′,𝑘𝑘′ 
representing optimal 𝑇𝑇,𝑘𝑘  can be obtained by PSO 
algorithm in the PSO-RF model. Furthermore, the 
prediction results can be got under the training subset. 
The PSO-RF prediction model of building cluster hourly 
electricity consumption is learned. The prediction results 
can be obtained under the testing subset. 
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Fig.1 The flow chart of hourly electricity consumption prediction model for the building cluster based on PSO-RF 

algorithm 
3.4 Assessment criteria 

R2, RMSE, and MAE are adopted as evaluation index 
es in this study. The mean value is taken as the error 
benchmark in R2 limited between 0 and 1, which reflects 
the level of error between the forecast value and the 
mean benchmark. RMSE mainly reflects the dispersion of 
the error between the forecast and the actual value. In 
addition, MAE shows on the mean value of the absolute 
error between the forecast and the actual value. R2, 
RMSE, and MAE can be calculated as Eqs.(3)-(5), 
respectively. 

𝑅𝑅2 = 1 − ∑ (𝑦𝑦�𝑛𝑛−𝑦𝑦𝑛𝑛)2𝑁𝑁
𝑛𝑛=1
∑ (𝑦𝑦�−𝑦𝑦𝑛𝑛)2𝑁𝑁
𝑛𝑛=1

           (3) 

𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅 = �1
𝑁𝑁
∑ (𝑦𝑦�𝑛𝑛 − 𝑦𝑦𝑛𝑛)2𝑁𝑁
𝑛𝑛=1         (4) 

𝑅𝑅𝑀𝑀𝑅𝑅 = 1
𝑁𝑁
∑ |𝑦𝑦�𝑛𝑛 − 𝑦𝑦𝑛𝑛|𝑁𝑁
𝑛𝑛=1           (5) 

𝑁𝑁 is the total number of samples in sample set. 𝑦𝑦�𝑛𝑛 
and 𝑦𝑦𝑛𝑛 denote the predicted value and actual value of 
the 𝑟𝑟-th sample, respectively. 𝑦𝑦� is the average of the 
actual values of all samples. Overall, a larger R2, a smaller 
RMSE, and a smaller MAE indicate a better fitting model. 

Accuracy, generalization, and robustness are used to 
evaluate the PSO-RF prediction model of building cluster 
hourly electricity consumption. Based on the training 
subset, the PSO-RF prediction model is trained and can 
be used to predict building cluster hourly electricity 
consumption. Accuracy can be got under training subset 
with R2, RMSE, and MAE. Generalization capability refers 
to the prediction capability of the model for samples 
beyond the training range, which can be obtained by 
testing subset with metrics (i.t., R2, RMSE, and MAE). In 
addition, the problem of predicting the building cluster 
electricity consumption suffers from the phenomenon 
that the collected data may deviate from the actual data. 
Testing subset is modified by adding Gaussian white 
noise to evaluate the prediction model’s robustness [27]. 

R2 reflects the proportion of the total variation in the 
dependent variable that can be explained by the 
independent variable [21]. Therefore, R2 is selected to 
evaluate the robustness of the PSO-RF prediction model 
in this study. 

4. CASE STUDY 

4.1 Data acquisition 

To verify the accuracy, generalization, and 
robustness of the hourly electricity consumption PSO-RF 
prediction model of building cluster, cases are 
investigated for a building cluster consisting of 10 
residential buildings located in Austin, Texas, USA. Hourly 
electricity consumption data in 2018 (i.e., 8760 hours) is 
collected and shown in Fig.2 [28]. The data of 
temperature ( ℉ ), humidity (%), wind speed (mph), 
pressure (in), dew point (℉), and precipitation (in) are 
obtained from relevant meteorological websites [29]. 

 
Fig.2 Hourly electricity consumption of the building 

cluster in Austin, 2018 

4.2 Prediction and analysis 

To compare the effectiveness of different regression 
models, four models (i.e., RF, XGBoost, DT, and kNN) are 
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applied to forecast hourly electricity consumption of 
building cluster. Regression models are programmed 
with Python programming language on Anaconda 
platform on a computer equipped with Intel(R) Core 
(TM) i5-8265U CPU @1.60GHz processor and 8GB 
memory. Nice influencing factors are used as input 
feature variables for the prediction models, and the 
hourly electricity consumption of the building cluster is 
adopted as the label. In the PSO-RF model, 𝑐𝑐1 and 𝑐𝑐2 
are usually assumed as 𝑐𝑐1 = 𝑐𝑐2 = 2 , and 𝐼𝐼  is set as 

𝐼𝐼 = 100. The number of decision trees 𝑇𝑇 ranges from 0 
to 300 [30], and random features 𝑘𝑘 ranges from 1 to 9. 

Considering seasonality and cyclicity, the accuracy, 
generalization, and robustness of the hourly electricity 
consumption PSO-RF prediction model for building 
cluster are tested in summer and winter, and transition 
seasons, respectively. The sample sizes of the training 
and testing subsets in different seasons, and the 
evaluation indexes are shown in Table 1. 

Table 1 Data sets and evaluation indexes of hourly electricity consumption prediction model for the building cluster in different 
seasons 

 Summer Winter Transition season Assessment criteria 
Training subset Time Apr,May Oct,Nov Jan, Feb, Mar, Jul, Aug Accuracy 

Sample size 1464 1464 3648 
Testing subset Time Jun Dec Sep Generalization, 

robustness Sample size 720 744 720 

4.2.1 Accuracy 

Under different seasons, five different prediction 
models (PSO-RF, RF, XGBoost, DT, and kNN) are trained 
based on training subset to forecast the building cluster 
hourly electricity consumption. In the summer, the 
training subset consists of 1464 samples from April to 
May. In the winter, the training subset consists of 1464 
samples from October to November. In the transition 
season, the training subset consists of 3648 samples in 
January-March and July-August. For the PSO-RF 
prediction model in different seasons, the 𝑇𝑇′  and 𝑘𝑘′ 
(optimal parameters) are obtained by the PSO algorithm 
and are given in Table 2. 

Table 2 The 𝑇𝑇′ and 𝑘𝑘′ of the PSO-RF models in different 
seasons 

Parameter Summer Winter Transition 
season 

𝑇𝑇′ 𝑘𝑘′ 𝑇𝑇′ 𝑘𝑘′ 𝑇𝑇′ 𝑘𝑘′ 
Value 256 6 189 5 87 3 

In summer, the predicted and actual building cluster 
hourly electricity consumption under training subset in 
the five prediction models are displayed in Fig.3. The 
dashed line denotes that predicted and actual building 
cluster hourly electricity consumption are equal. 
Compared with RF, XGBoost, DT, and KNN prediction 
models, the R2 of the PSO-RF model can be improved by 
2.06% to 12.5% in predicting building cluster hourly 
energy consumption in summer. Therefore, the 
predicted results in PSO-RF model are more closely 
matched to the actual values under training subset in 
summer. 
 

 
Fig.3 The predicted and actual hourly electricity 

consumption of the building cluster under training 
subset in summer 

In winter, the predicted and actual building cluster 
hourly electricity consumption under training subset in 
the five prediction models are shown in Fig. 4. The 
dashed line indicates predicted values equaling with 
actual values. In comparison, the R2 of the PSO-RF 
prediction model for forecasting hourly electricity 
consumption of the building cluster is improved by 3.12% 
to 15.12% in winter. Combining the scatter distribution 
and R2 values in Fig. 4, it is found that the PSO-RF model 
has the best prediction effect, followed by the RF model, 
XGBoost model, DT model and kNN models. 
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Fig.4 The predicted and actual hourly electricity 

consumption of the building cluster under training 
subset in winter 

In transition season, the predicted and actual 
building cluster hourly electricity consumption under 
training subset in the five prediction models are 
displayed in Fig. 5(a) to (e), respectively. The dashed lines 
in the subplots represent the predicted values equaling 
with actual values. The transition season involves 
January-March and July-August. From Fig. 5, it can be 
concluded that the PSO-RF prediction model has the 
highest R2 with 0.99. Compared with other four models, 
the R2 of the PSO-RF model can be improved by 4.21% to 
11.24% in the transition season. Figs 4,5 and 6 indicate 
that the PSO-RF prediction model has higher R2 than 
other four prediction models for predicting building 
cluster hourly electricity consumption under training 
subsets in different seasons. 

 

 

 
Fig.5 The predicted and actual hourly electricity 

consumption of the building cluster under training 
subset in transition season 

The accuracy of the five models for predicting the 
hourly electricity consumption of building cluster in 
different seasons are shown in Table 3. The PSO-RF 
prediction model has the largest R2 and the smallest 
RMSE and MAE values, which indicates the highest 
accuracy under training subsets. Furthermore, compared 
to the RF model, the PSO-RF model can achieve R2 
improved by 2.06% to 4.21%, RMSE reduced by 39.39% 
to 53.13%, and MAE reduced by 38.41% to 52.41% in 
different seasons. Compared with KNN model, R2 is 
improved by 11.24% to 15.12%, and RMSE is reduced by 
67.76% to 70.50% with MAE reduced by 68.33% to 
71.16% in different seasons. Therefore, under training 
subsets, the PSO-RF model for forecasting the building 
cluster hourly electricity consumption can achieve higher 
accuracy than all the other four models. 

Table 3 Comparison of accuracy indexes of different models of the building cluster hourly electricity consumption in different 
seasons 

Prediction model PSO-RF RF XGBoost DT kNN 
Summer R2 0.99 0.97 0.97 0.96 0.88 

RMSE(kW) 3.57 5.89 6.00 6.18 12.10 
MAE(kW) 2.63 4.27 4.48 3.69 9.12 

Winter R2 0.99 0.96 0.96 0.94 0.86 
RMSE(kW) 3.16 5.26 5.38 6.02 9.80 
MAE(kW) 2.32 3.99 4.02 3.75 7.44 

Transition season R2 0.99 0.95 0.93 0.93 0.89 
RMSE(kW) 3.75 8.00 8.71 8.83 11.72 
MAE(kW) 2.80 6.01 6.56 6.09 8.84 

4.2.2 Generalization 

Under difference seasons, the five different 
prediction models trained by training subsets are tested 

by testing subsets with evaluation index of generalization 
ability. The testing subset in summer and winter as well 
as transition season consist of 720 samples, 744 samples 
and 720 samples of the building cluster, respectively.  
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In summer, the predicted and actual hourly 
electricity consumption of the building cluster in the five 
prediction models are displayed in Fig. 6. The dashed line 
indicates predicted values equaling with actual values. 
Fig. 6 demonstrates that the PSO-RF prediction model 
has the highest R2 (i.e., 0.95) followed by the RF model, 
XGBoost, kNN, and DT prediction models. The weakest 
generalization ability is the DT model with an R2 value of 
0.74. 

 
Fig.6 The predicted and actual hourly electricity 

consumption of the building cluster under testing subset 
in summer 

In winter, the predicted and actual building cluster 
hourly electricity consumption under testing subsets in 
the five prediction models are shown in Fig. 7. The 
horizontal and vertical coordinates indicate the actual 
and the corresponding predicted the building cluster 
hourly electricity consumption, respectively. The PSO-RF 
prediction model with highest R2 (i.e., 0.90) is suitable for 
forecasting building cluster hourly electricity 
consumption in winter. 

 

Fig.7 The predicted and actual hourly electricity 
consumption of the building cluster under testing subset 

in winter 
In transition season, the predicted and actual hourly 

electricity consumption of the building cluster under 
testing subset are shown in Fig. 8. Fig.8 demonstrates 
that the PSO-RF model has the highest R2 of 0.87. The 
worst performance is the DT prediction model with R2 of 
0.68. Figs 6,7 and 8 indicate that the PSO-RF prediction 
model has higher R2 than other four prediction models 
under testing subsets in different seasons. 

 
Fig.8 The predicted and actual hourly electricity 

consumption of the building cluster under testing subset 
in transition season 

The generalization of the five models for forecasting 
the hourly electricity consumption of the building cluster 
in different seasons are shown in Table 4. According to 
largest R2 and smallest RMSE as well as MAE values, the 
built PSO-RF prediction model has the strongest 
generalization ability compared with other four 
prediction models. Furthermore, the PSO-RF model 
compared with RF model can realize R2 improved by 
4.40%-5.88%, RMSE reduced by 15.14%-32.85% and 
MAE reduced by 19.85%-29.82% in different seasons. 
According to Tables 3 and 4, the proposed PSO-RF 
prediction model can achieve higher accuracy and 
generalization than RF, XGBoost, DT, and kNN prediction 
models for forecasting building cluster hourly electricity 
consumption in different seasons. 

Table 4 Comparison of generalization indexes of the building cluster hourly electricity consumption prediction models in different 
seasons 

Prediction model PSO-RF RF XGBoost DT KNN 
Summer R2 0.95 0.91 0.85 0.74 0.78 

RMSE(kW) 7.88 10.46 17.17 21.20 16.75 
MAE(kW) 4.93 6.84 12.01 15.33 12.99 

Winter R2 0.90 0.85 0.76 0.78 0.74 
RMSE(kW) 7.81 11.63 13.61 13.31 13.94 
MAE(kW) 4.19 5.97 5.36 5.59 9.33 

Transition season R2 0.87 0.83 0.72 0.68 0.73 
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RMSE(kW) 10.93 12.88 16.17 17.19 16.00 
MAE(kW) 7.39 9.22 12.25 11.89 12.24 

4.2.3 Robustness 

Different levels of Gaussian white noise are added to 
the testing subsets in the summer, winter, and transition 
seasons to measure the robustness of the prediction 
models. The noise intensity is in the range of [0,1] and is 
increased by step size 0.1. With the changing noise 
intensity, the R2 are recalculated in different prediction 
models and shown in Fig. 9. The R2 is decreasing as the 
noise intensity increasing, which reflects the decreasing 
prediction effect. When the noise intensity reaches 100% 
in the testing subsets, the R2 values of PSO-RF models 

decrease to 0.80, 0.57, and 0.71 in summer, winter, and 
transition seasons, respectively. At the same time, the R2 
of the DT models decrease to 0.43, 0.22, and 0.47 in 
summer, winter, and transition seasons, respectively. 
The line trend in Fig.9 indicate that the overall R2 of the 
PSO-RF prediction model is higher other four prediction 
models expressing the stronger robustness. As shown in 
Tables 3, 4 and Fig. 9, the proposed PSO-RF prediction 
model can obtain more accuracy, generalization, and 
robustness than RF, XGBoost, DT, kNN prediction models 
in forecasting the building cluster hourly electricity 
consumption. 

 
Fig.9 The robustness of the building cluster hourly electricity consumption prediction models with noise intensity in 

different seasons 

5. CONCLUSTION 
In this paper, a PSO-RF prediction model for hourly 

electricity consumption of building cluster is proposed 
considering 9 influencing factors. Two parameters of the 
RF model are optimized by PSO algorithm to enhance 
performance. The case study results show that the 
presented PSO-RF prediction model applied in Austin’s a 
building cluster can achieve highest R2, smallest RMSE 
and MAE compared with RF, XGBoost, DT, kNN 
prediction models with different evaluation indexes in 
summer, winter, and transition seasons. For example, 
the R2 of the PSO-RF prediction model can be improved 
by 2.06% ~12.5% compared with RF, XGBoost, DT, and 
KNN prediction models in summer with the perspective 
of accuracy. Therefore, the PSO-RF prediction model can 
be used to forecast building cluster hourly electricity 
consumption with good performance. The prediction 
method has the potential to operate stably under 
different working conditions throughout the year, and 
can provide a way to optimize the building cluster energy 
supply system. 

For future work, this research can be extended to 
consider building types. In addition, prediction and 
optimization can be researched jointly to enhance 
building cluster efficiency.  
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