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ABSTRACT 
Obtaining an accurate mapping relationship 

between lithium-ion battery open-circuit voltage (OCV) 
with the state of charge (SOC) at different ambient 
temperatures is the basis for its accurate SOC estimation 
in the whole ambient temperature range. However, the 
experimental test of the OCV-SOC correspondence takes 
a lot of time; and it is obviously impossible to perform 
the test at all temperatures. To achieve accurate SOC 
estimation at different ambient temperatures with a 
lower experimental cost, a model-based SOC estimation 
method is proposed in this paper. First, based on 
generalized regression neural network (GRNN), an OCV-
SOC mapping model for the whole ambient temperature 
range is established. Second, a new diagonalization of 
matrix adaptive cubature Kalman filter (DMACKF) is 
proposed, which enhances the filtering stability and 
realizes the adaptive update of noises in the recursive 
process. Finally, combined with the forgetting factor 
recursive least squares (FFRLS) algorithm, the proposed 
SOC estimation method is verified under the DST 
conditions at three temperatures. The root mean square 
errors (RMSEs) of SOC estimation results are within 0.4% 
at each temperature. 
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1. INTRODUCTION
Lithium-ion batteries are widely used in new energy

electric vehicles and energy storage systems due to their 
advantages of high energy density and environmental 
protection [1]. However, due to the temperature 
sensitivity of lithium-ion batteries, an advanced battery 
management system (BMS) that considers the influence 
of temperature is very important to ensure the reliable 
and safe operation of electric vehicles [2]. State of charge 
(SOC) is the most important and basic parameter in BMS. 
Realizing accurate estimation of SOC under different 
ambient temperatures is not only the basis for the 
accurate state of health estimation in BMS, but also has 

great reference value for proposing reasonable battery 
thermal management solutions [3]. 

Pang et al. [4] proposed an improved lithium-ion 
battery dual-polarization model considering ambient 
temperature influence. But it was assumed that the 
parameters of the battery model only change due to the 
ambient temperature. Wu et al. [5] conducted research 
on the lithium-ion battery SOC estimation method under 
a wide temperature range. But the used filter algorithm 
did not consider the changed noise in the estimation 
process. Moreover, the above researches were all based 
on the premise that the known open-circuit voltage 
(OCV) and SOC data of lithium-ion batteries at the target 
temperature.  

However, it is obviously impossible to obtain the 
OCV-SOC data at all ambient temperatures. It is very 
important to map the OCV-SOC correspondence over the 
whole temperature range through the OCV-SOC data at 
partly known temperatures. Essentially, the OCV-SOC 
mapping is a nonlinear regression fitting problem. 
Therefore, considering the powerful nonlinear fitting 
capability and flexible network structure of the 
generalized regression neural network (GRNN), which 
has high fault tolerance and robustness. We have built a 
GRNN network model of OCV with SOC and ambient 
temperature to obtain the OCV-SOC correspondence in 
the whole ambient temperature range. 
2. PROPOSED METHOD

2.1 Generalized regression neural network 

The GRNN is a kind of radial basis neural network, 
whose structure is analogous to the radial basis function 
network as well. But a summation layer is added 
between the pattern layer and the output layer, while 
the weight connection between the hidden layer and the 
output layer in the feedforward neural network is 
omitted. In the summation layer of GRNN, two types of 
neurons are used to perform arithmetical summation 
and weighted summation on the outputs of all neurons 
in pattern layers respectively, in which there is only one 
neuron for arithmetical summation, and the number of 
neurons for weighted summation is equal to the 
dimension of the output vector in the samples. In the 

Vol 27, 2022



  2 

output layer, the outputs of the weighted summation 
neurons in the summation layer are divided by the 
output of the arithmetic summation neuron, and the 
obtained results are the output of each neuron in the 
output layer. 

 
Fig. 1 GRNN structure 

The structure of GRNN proposed in this paper is 
shown in Fig 1. The GRNN was trained through the data 
obtained from the low current test at 0°C, 10°C, and 20°C 
ambient temperature, where the SOC and temperature 
were used as input vectors, corresponding to the OCV as 
the output vector. Therefore, the number of neurons in 
the input layer, summation layer, and output layer was 
2, 2, and 1 respectively. The number of neurons in the 
pattern layer was the number of samples in the training 
set. 

2.2  Diagonalization of matrix adaptive cubature 
Kalman filtering 

To improve the estimation performance of the 
cubature Kalman filter (CKF) algorithm, we replaced the 
Cholesky decomposition of the covariance matrix in the 
filtering process with the method of matrix 
diagonalization [6]. The square root matrix obtained by 
this method is a theoretical square root matrix, which 
could retain the original eigenspace information of the 
covariance matrix. The process makes the transmission 
of covariance more accurate and can effectively improve 
the filtering accuracy. 

After that, according to the principle of window 
estimation, the adaptive update of the process noise Q 
and the observation noise R was realized in the CKF 
recursion process. 

2.3 Joint algorithm 

In this paper, based on the OCV-SOC test data at the 
known temperatures, an OCV-SOC mapping model was 
established through GRNN. After that, the CKF algorithm 
was improved to enhance the filtering accuracy and 
stability in the recursive process. Finally, the forgetting 
factor recursive least squares (FFRLS) algorithm was 
combined to update the other parameters of the battery 
model and complete the SOC estimation of the lithium-
ion battery at the other ambient temperatures, whose 
OCV-SOC test data was unknown. The flow chart of the 
joint algorithm is shown in Fig 2.  

The simulation process of the proposed method in 
this paper was executed on MATLAB software, and all the 
codes used will be shared in the final manuscript if 
requested. 
3. RESULTS OF THE GRNN-DMACKF METHOD 

3.1 OCV-SOC validation results of GRNN 

To verify the fitting accuracy of OCV-SOC by the 
proposed GRNN model at different ambient 
temperatures, the low-current test SOC datasets at 30°C, 
40°C, and 50°C were used as input, and the GRNN fitting 
surface was shown in Fig 3. The fitting errors were shown 
in Fig 4. Meanwhile, to further verify the fitting accuracy, 
the root mean square error (RMSE) of the SOC fitting 
results was calculated, as shown in Table 1. 

Table 1. RMSE of OCV at various ambient temperatures 
Temperature/°C 30 40 50 

RMSE/V 0.0074 0.0097 0.0118 

It can be seen from Fig 4 and Table 1 that the trained 
GRNN model had high fitting accuracy, the RMSE at each 
temperature did not exceed 0.012V. The proposed 
model could accurately map the corresponding 
relationship of OCV-SOC at each ambient temperature. 
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Fig. 2 Flow chart of the GRNN-DMACKF method 
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Fig. 3 GRNN fitting surface of OCV-SOC 
Fig. 4 GRNN fitting errors of OCV-SOC

3.2 SOC estimation results 

To verify the effectiveness of the proposed method, 
we completed the SOC estimation of the experimental 
A123 lithium-ion battery under DST working conditions 
at 30°C, 40°C, and 50°C. Besides, the SOC estimation 
results based on the CKF and DMCKF were compared. 

The SOC estimation and error results were shown in Fig 
5. Meanwhile, to further verify the robustness of the 
proposed method, the RMSEs of the SOC estimation 
results were also calculated respectively, as shown in Fig 
6. The experimental data used in this paper is from the 
CALCE battery research group at the University of 
Maryland. 
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Fig. 5 SOC estimation results. (a) results at 30°C; (b) results at 40°C; (c) results at 50°C; (d) errors at 30°C; (e) errors at 

40°C; (f) errors at 50°C; 

 
Fig. 6 RMSEs at three ambient temperatures 

As shown in Fig. 5 and Fig. 6, the SOC estimation 
errors based on CKF increased very fast at the beginning 
of the recursion. Although the subsequent SOC 
estimation results conform to the changing trend of 
reference, the errors remained at a relatively high state. 
But when the covariance matrix in CKF had been 
optimized, the SOC estimation errors in the estimation 
process were significantly reduced. However, the 
divergence phenomenon of the estimation results in the 
low SOC interval still existed, which was mainly due to 
the intensified polarization of the lithium-ion battery in 
the low SOC interval and the fixed noise of the basic CKF 
algorithm. After realizing the adaptive update of noise in 
the filtering process, not only the initial SOC estimation 
results could quickly converge to the vicinity of 
reference, but also the divergence phenomenon in the 
entire SOC interval had disappeared.  
4. CONCLUSION 

In this paper, firstly, by establishing a GRNN model, 
an accurate fitting relationship of the experimental 
battery’s OCV-SOC in the whole temperature range was 

successfully obtained. Secondly, the state estimation 
algorithm in SOC estimation was enhanced by improving 
the standard CKF. Finally, combined with the FFRLS, the 
SOC estimation of the lithium-ion battery under DST 
working condition at different ambient temperatures 
was completed. According to the OCV-SOC fitting results, 
without the low-current test data of the experimental 
battery at the target temperatures, the trained GRNN 
model could still map the OCV-SOC correspondence of 
the lithium-ion battery at the temperature with high 
accuracy. Meanwhile, the proposed DMACKF algorithm 
could achieve high precision SOC estimation at each 
temperature; the RMSE based on GRNN-DMACKF at each 
temperature did not exceed 0.4%.  
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