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ABSTRACT 
 This study applies a distributed energy resources 
scheme on industrial microgrids and provides a case 
study that is based on the Component-oriented 
Modeling and Optimization for Nonlinear Design and 
Operation (COMANDO). The model comprises 
distributed energy resources commonly used by 
industrial enterprises (i.e., solar power, combined-heat-
and-power, heat pumps), energy storage systems, and 
management strategies (peer-to-peer trading, bulk 
purchasing). To demonstrate the model, a case study is 
conducted for a real-world industrial area in Germany. 
We find that the economic impact of the various 
strategies is highly dependent on the specific demand 
curves. However, combining the DER and the stated 
management strategies is always profitable and leads to 
reductions of a global warming index used as an 
ecological indicator. 

Keywords: microgrid, district heating, distributed energy 
resources, peer-to-peer trading 

NOMENCLATURE 
Abbreviations 
a year 
B Boiler 
BAT Battery 
BAU Business-as-usual 
CHP Combined Heat and Power 
COMANDO Component-oriented modeling and 

optimization for nonlinear design and 
operation 

DES Decentralized energy systems 
DER Distributed energy resources 
ED Electric demand 
ESS Energy storage systems 
GD Gas demand 

GW Gigawatt 
GWI Global warming index 
GWp Gigawatt peak 
h Hour 
HD Heat demand 
HP Heat pump 
IES Industrial energy system 
IMG Industrial Microgrid 
MG Microgrid 
NPV Net present value 
P2P Peer-to-Peer 
PD Power demand 
PV Photovoltaic 
RE Renewable energy 
RES Renewable energy system 
ROI Return on investment 
HWS Hot water storage 
TSA Time series aggregation 

Symbols 
BC Battery capacity 
ci Costs of component i 
cref Reference cost 
Eq equivalent 
I Firm I 
IN Input 
K Firm K 
kt Kiloton 
M Cost escalation factor 

m Market electricity price 
OUT Output 
S Fixed cost parameter 
Qi Output of component i 
Qref Reference output 
u Utility electricity price
Z Firm Z
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z Electricity price participant Z 

1. INTRODUCTION 
Global microgrid capacity is expected to rise from 

some 3.5 GW in 2019 to 20 GW by 2028. Still, little 
research has been done on modeling distributed energy 
resources in industrial microgrids (IMG). 

To be able to make a strong case for distributed 
energy resources (DER) as a factor in fighting climate 
change, it must be shown that the technologies are 
profitable and have the potential to help to significantly 
slow down global warming. However, first it should be 
proven that Germany has the capacity to implement the 
necessary amount of DER. 

A study examining the rooftop photovoltaic (PV) 
potential for the city of Dresden and Germany overall is 
[1]. It shows that the capacity needed for establishing a 
climate-neutral energy system in Germany (387 GWp) 
was surpassed by 30%, estimating the overall rooftop 
potential at 500 GWp. 

After showing that Germany would have the capacity 
for enough DER, [2] discusses the economic aspects of 
integrating DER in industrial areas. The authors 
optimized energy equipment sizing, including electricity 
and thermal power – for a Spanish industrial site under 
the objective of minimizing the net present value (NPV). 
The optimality results predicted payback periods of less 
than five years. 

A possible way to further increase the benefits of and 
interest in DER could be peer-to-peer (P2P) trading. 
Applied to energy, it enables participants to trade energy 
with each other through a microgrid, more or less 
independently from the usage tariffs paid when using the 
utility grid.  

Having chosen a three-layer P2P electricity trading 
system, [3] showed the monetary benefits of P2P trading 
for communities with high penetration of household 
distributed PV. The results show that within a single day, 
62.5% of the surplus PV electricity of all prosumers could 
be consumed within the community. Through P2P 
electricity trading of this part of electricity, total 
revenues of prosumers were increased by 11.5%, and 
total expenditures of all users decreased by 7.5%, 
resulting in a decrease of the net expenditures of the 
whole community by 13.8%. 

P2P trading in general is physically possible between 
all users connected to the same grid but is restricted 
through the regulations on grid operators. To reduce the 
outer control of the trading there is the possibility to 
manage multiple demands and suppliers of power in a 
so-called microgrid (MG). In research in this field, this is 
a commonly used concept. Advantages and barriers of 

MGs were shown in a systematic mapping in which 
research trends of industrial smart and microgrids were 
assessed (Brem et al., 2020). One major finding of the 
study is that future research should focus on 
incorporating energy storage systems (ESS) into existing 
systems to optimize financial performance.  

The research concerning DER in different scenarios of 
usage is widespread, covering all known concepts of 
usage and technologies available. Still, to our best 
knowledge, a case study for a German industrial 
microgrid including all the relevant technologies and 
management strategies does not yet exist in the 
literature. Such a study could be very useful for industrial 
players interested in reducing their negative impact on 
the environment, whilst staying economically 
competitive. 

The literature review showed that little research 
exists on the integration of DER in German industrial 
areas. This study is supposed to add to the literature, 
reducing uncertainties of potential industrial users. In 
our study, we want to provide more information on the 
industrial usage of DER, evaluate its benefits, and outline 
ways of integrating DER into existing energy systems. We 
show the feasibility of using renewable energies in 
industrial areas and the positive effects that this would 
have on the environment. Besides the reduction of 
uncertainty, we also quantify the effects of P2P trading 
on economic and environmental criteria, compared to 
using DER separately. This is done to increase legislators’ 
interest in creating legal frameworks for using P2P. 
Overall, we hope to fasten the diffusion of renewables in 
industrial applications. To do so, an optimization model 
was developed, allowing the virtual design and operation 
of industrial energy systems. 

The model comprises DER commonly used by 
industrial enterprises (i.e., solar power, combined-heat-
and-power/CHP, heat pumps/HP), ESS, and management 
strategies (P2P trading, bulk purchasing). To 
demonstrate the model, a case study was conducted for 
a real-world industrial area in Germany. The IMGs power 
and heat demand are modeled through a mix of 
synthetic standard load profiles and actual data obtained 
from the case study participants. Generation profiles of 
the solar DER are based on meteorological data for the 
area. In the optimization, the economic and greenhouse 
gas emissions effects. The latter is measured by the 
Global Warming Index (GWI) of the various management 
strategies for the technology combinations considered, 
resulting in an optimal DER mix to be installed in the 
industrial area of interest. The GWI is computed by 
summing up the emissions of the DER operation and the 
emissions of the energy taken from the grid. 
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2. MODEL SPECIFICATION 
In this study, an already existing energy system 

optimization model for a university campus is adapted 
for optimizing an industrial area in Germany with 
multiple users of the same energy system. To that end, a 
case study with three industrial users was conducted. For 
reasons of confidentiality, the firms are named I, K and Z. 
First, the changes made to the original model are 
explained, followed by a short description of the case 
study conducted. 

The optimization is based on the industrial energy 
system (IES) case study reported in [4] which itself is 
based on [5]. The model was formulated in Python, an 
open-source programming language. The application is 
divided into two sections: building the model and 
running it. The former starts by creating an energy 
system in which all components considered in the 
optimization are integrated: Electricity demand (ED); 
Heat demand (HD); Power demand (PD); Gas demand 
(GD); Boiler (B); CHP; HP; PV; Battery (BAT); and Hot 
water storage (HWS). 

Each component exists only once and is assumed to 
be used jointly if necessary. This is because, under the 
current German legislation, there can only be one energy 
supplier per consumer [6]. This led to the idea of using 
an MG managed by an energy hub operator internally, 
having only a single connection point to the utility grids 
for gas and electricity. The assumption is based on [7]. 
Besides the legal aspect, [8] finds that sharing a 
Renewable energy system (RES) might make even better 
use of diverse demand and generation patterns. The 
components also inherit a binary variable, determining if 
a component is built in the optimization or not [4].  

The components need to be parametrized before 
use. They can be separated into demand, generation, 
and storage. The demand components are described 
first. Electricity and heat demand are both components 
specified as load time series of one or multiple firms, 
introduced later in the data set. Residual power and gas 
loads are those capacities that the MG needs to take 
from the public grid in order to satisfy all demands that 
cannot be supplied internally. Next, the generation 
components are parametrized. Characteristics of 
generation components are that they need to be 
purchased and that they generate useful energy from 
input not exploitable by the user. Therefore, all of these 
components have a cost and efficiency function. Some of 
the components are also characterized by specific part-
load behavior. This is the case when efficiency changes, 
i.e. when a component is used at less than maximal load. 
Part-load behavior is described individually for the 
respective components. The cost functions for all 

components except the battery are assumed to be non-
linear and must be linearized by COMANDO during the 
solving. The cost functions are determined by the output 
variable Q of component i divided by the reference 
output Qref,i raised to the power of M and multiplied by 
the reference cost cref,i (Eq. 1), i.e.: 

𝑐𝑐𝑖𝑖 =  𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖 ∗ �
𝑄𝑄𝑖𝑖

𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖
�
𝑀𝑀

.   (1) 

The efficiency determines the output generated 
from the input and is specific to each component. 

The boiler generates heat from burning gas, thus 
using gas as an input and producing heat as the output. 
Its cost function is set to zero since all participants 
already operate boilers capable of providing their own 
heat demand. Therefore, no further investment is 
needed. The boiler´s efficiency and its part-load behavior 
are taken from [9]. 

The HP uses electricity and energy from ambient air 
to produce heat. Only electricity is considered as an input 
since air is usually freely available. Heat is the output. The 
cost function is taken from [5], with a slightly higher cost 
exponent, due to prices observed in the heat pump 
market when the study was conducted. The ambient 
temperature for operation is taken from the COMANDO 
data set. The temperature of output heat can be chosen 
individually and differs between firms since one is 
heating through floor heating (40 °C) while the other 
uses radiators for heating (70 °C). When the component 
is used jointly the less energy-efficient configuration with 
70 °C is assumed. 

CHP units generate electricity and heat from a gas 
turbine. As gas is the input, the component has electricity 
and heat as outputs at a fixed ratio. The parametrization 
was again adopted from [5], including three predefined 
sizes of the CHP unit with different ranges for the 
nominal capacity, as in [4]. This accounts for the size 
dependency of the conversion efficiencies for heat and 
electricity. The three CHP models are aggregated into a 
subsystem, which enforces that at most one of them is 
being built. 

Since the parametrization is based on data from 
2019 or older it was found that costs for PV had changed 
drastically. This led to a change in the cost parameter cref. 
Offers of regional PV suppliers were used to reevaluate 
the parameter. Capacity is based on the available rooftop 
size and differs for the different users. Free-field PV is not 
considered. 

The battery storage unit is charged and discharged 
with electricity and defined through charging and 
discharging efficiencies. The only major change was 
made to the cost function. A market review of 181 
batteries resulted in a linear cost function (ordinary least 
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squares regression). A fixed cost parameter S was added 
to the multiplication of the reference cost cref and the 
variable battery capacity BC, i.e.: 

cbat=S+cref∙BC    (2) 

Hot water storage uses the same functionality as the 
battery and thus a similar parametrization was adopted. 
The maximum capacities of the storage units are 
restricted to reasonable sizes since the weighted sum 
method, which is used in COMANDO, always favors 
maximal storage when only the environmental objective 
is considered. 

After parametrizing all components, they are 
connected to energy balances. Balances for power (Eq. 
3), gas (Eq. 4), and heat (Eq. 5) are deployed. The 
balances do not allow for residuals, thus all energy 
outputs from a Decentralized energy systems (DES) must 
be consumed by others in the same balance. IN and OUT 
determine if energy is consumed or provided by a DES. 
The connections of the components are shown in Fig. 1. 
 

0 = 𝑄𝑄𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.𝑃𝑃𝑂𝑂𝑂𝑂 + 𝑄𝑄𝑃𝑃𝐸𝐸.𝐼𝐼𝐼𝐼 + 𝑄𝑄𝐵𝐵𝐵𝐵𝑂𝑂.𝐼𝐼𝐼𝐼 + 𝑄𝑄𝐵𝐵𝐵𝐵𝑂𝑂.𝑃𝑃𝑂𝑂𝑂𝑂 +
                𝑄𝑄𝐻𝐻𝑃𝑃.𝐼𝐼𝐼𝐼 + 𝑄𝑄𝐶𝐶𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟.𝑃𝑃𝑂𝑂𝑂𝑂 + 𝑄𝑄𝑃𝑃𝑃𝑃.𝑃𝑃𝑂𝑂𝑂𝑂  
      (3) 
 

0 = 𝑄𝑄𝐶𝐶𝐻𝐻𝑃𝑃.𝐼𝐼𝐼𝐼 + 𝑄𝑄𝐵𝐵.𝐼𝐼𝐼𝐼 + 𝑄𝑄𝐺𝐺𝐵𝐵𝐺𝐺.𝑃𝑃𝑂𝑂𝑂𝑂   (4) 
 

0 = 𝑄𝑄𝐻𝐻𝐸𝐸.𝐼𝐼𝐼𝐼 + 𝑄𝑄𝐺𝐺𝑂𝑂𝐻𝐻.𝐼𝐼𝐼𝐼 + 𝑄𝑄𝐺𝐺𝑂𝑂𝐻𝐻.𝑃𝑃𝑂𝑂𝑂𝑂 + 𝑄𝑄𝐻𝐻𝑃𝑃.𝑃𝑃𝑂𝑂𝑂𝑂 +
                𝑄𝑄𝐶𝐶𝐻𝐻𝑃𝑃𝐻𝐻𝑟𝑟𝐻𝐻𝐻𝐻.𝑃𝑃𝑂𝑂𝑂𝑂 + 𝑄𝑄𝐵𝐵.𝑃𝑃𝑂𝑂𝑂𝑂   
      (5) 
 

 
Fig. 1 Energy flows in the DES investigated 

3. DATA USED 
The case study relies on multiple types of input data, 

differing in source, quantity and time of acquisition. The 
differences between data sets and the choice of specific 
subsets of the data are explained next. 

Starting with the data sets, the study uses data for 
solar irradiation, ambient temperature and the demands 
for heating and electricity. Data for the solar irradiation 

was taken from the HelioClim-3 database, which is 
derived from satellite data. The data was summoned for 
the location of an industrial park (in the German federal 
state of North-Rhine Westphalia) for the time period Jan 
1, 2006 to Dec 31, 2006. The year 2006 was chosen 
because it does not count among the ten hottest years 
measured, which all occurred after the year 2000. This 
was done to protect the data from being seen as biased 
towards renewables, which benefit from higher 
irradiation. The global irradiation on the horizon was 
chosen to account for weather influence (clouds, dust 
etc.). The ambient temperature was taken from the data 
set of the IES case study reported in [4]. This can lead to 
conflicts with the irradiation data since the data sets are 
for different years. Electricity demand data were 
provided by all three participating firms. This data was 
measured quarter-hourly by smart-metering systems. 
For the three firms, different time spans of data were 
obtained, but always accounting for one year. Two firms 
revealed their energy demands for the year 2021, the 
other for the year 2020. The data from firm Z of the year 
2020 was multiplied by 1.2 in order to account for the 
anticipated growth of the firms’ energy demands over 
the next two years. For confidentiality reasons data and 
participants are not disclosed (and only the aggregated 
data was provided). 

Heating demand data are only available for two of 
the firms since the last participant supplies all relevant 
heating by waste heat from electric process heating. For 
the other two firms, the heat demand is again supplied 
for the years 2020 and 2021. Feed-in tariffs were taken 
from the Federal Network Agency (Bundesnetzagentur) 
for the year 2022 [10]. 

Electricity prices were provided by the participating 
firms and matched with the respective demands. Gas 
prices, in contrast, were only available for one 
participant and assumed to be the same for the other 
firm. The CO2 emission factors for gas and electricity 
were taken from [5]. The rooftop area for one of the 
firms was calculated by the application PV Sol premium 
2022, while the areas for the other firms deviated from 
the best-case scenario, which would be the usage of the 
maximal area available at the industrial site. 

Techno-economic data for the components used in 
the study is from different sources, but were mostly 
adopted from the IES case study [4]. 

The data comes in large quantities. Since quarter-
hourly data for a year is analyzed, one is looking at 4 ∗
24 ∗ 365 = 35,040 data points. To reduce the data to 
fewer, more representative points time series 
aggregation (TSA) is used before the optimization. The 
TSA is following the approach introduced in [11]. This 
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results in four typical days, each representing the days 
most similar to it. The four days themselves are broken 
down from 96 time steps of a quarter-hour to four 
representative time steps in a day, as seen in Fig. 2. This 
reduces the data to 16 time steps a year, plus the 
maximum demands for heat and electricity. 

 

 
Fig. 2 Linearization of a daily, quarter-hourly electricity 

load curve to four typical load segments 

4. CASE STUDY 
The case study participants are firms I, K and Z, with 

Z producing machines primarily for the use in the 
production of plastic products and K and I being firms 
producing plastic products. Firm Z is working one 
dayshift, electricity is mostly used during the dayshift 
(Fig. 2), heating is realized through floor heating and the 
firm only produces during weekdays, while K and I are 
running continuously (24/7 operation). Firm K´s 
production is strongly reliant on extrusion. Extrusion is a 
process in the production of plastic products requiring 
large amounts of heat, which is usually generated 
through electricity. The extrusion requires large amounts 
of heat year-round, which is generated through 
electricity. This leads to constant electricity demand. 
Most production buildings are old and poorly insulated. 
Heating is supplied by radiators, needing high inlet 
temperatures. Firm I is producing non-woven fabrics. It is 
also relying on extrusion heavily. The extrusion is also 
powered by electricity and production is continuous 
throughout the year. Relevant heating demands are 
provided solely through waste heat from the production 
machines. Therefore, only electricity demand exists. The 
sum of the electricity demands of firms K and I is almost 
identical and for each is about 150 times the amount 
demanded by firm Z. 

The firms are paying different prices for their 
electricity, which is taken into account through three 

different price scenarios. These scenarios are run for the 
different setups of operation, with those being the BAU 
scenario, each firm´s sole operation scenario and the 
community scenario. The BAU scenario for each firm and 
for community use are run to establish a baseline. The 
BAU scenario allows only for the usage of the power and 
gas grids and a boiler for heating. It is run at the price 
firm Z is paying now (𝑃𝑃𝑍𝑍), the price the utility operator is 
charging (𝑃𝑃𝑂𝑂 ) and at market prices (𝑃𝑃𝑀𝑀) to be able to 
compare the results with community usage later. The 
results show the annual costs and reduction of the GWI 
when firms keep running their operations as before. The 
added up individual BAU scenarios compared to the joint 
BAU scenario takes the energy-sharing (synergy) effect 
into account. To determine how the different users 
benefit from the energy system optimization, the 
optimization is run for each firm separately. Comparing 
the results to the BAU scenario quantifies the benefits 
individually. Thereafter, the community scenario is run at 
the operator and market price. The comparison of these 
scenarios with the community BAU scenario shows the 
effect of integrating renewables collectively. For all 
scenarios, the GWI-reduction is compared and measured 
against the economic benefits.  

Overall, the optimization is done for the scenarios 
BAU, Z, K, I, C for the different electricity prices 𝑃𝑃𝑚𝑚, 𝑃𝑃𝑢𝑢 
and 𝑃𝑃𝑧𝑧 . The results show that some of the effects are 
strongly compromised by the rooftop capacity 
restrictions; therefore, two extra simulations (scenarios 
19 and 20) were run without any rooftop capacity 
restrictions. 

When collecting the data, the authors also learned 
about some of the case study participants´ motivations. 
Besides the shared goal of reducing the negative 
environmental impact of their energy supplies, 
objectives were quite different. Firm Z was most 
interested in achieving the highest degree of self-
sufficiency possible. Due to the recent energy price rises 
the company wished to meet as much of its energy needs 
by self-supply, thus reducing its reliance on the utility 
grid and the high tariffs charged by the grid operators. 
Self-supply would, so the expectation, help to reduce 
uncertainty about future energy costs and increase the 
company’s planning security. Firm K tied its energy 
supply goals to the corporate goal of reducing its 
greenhouse gas emissions by 30% by 2030. Its goal was 
to reduce emissions as much as possible without losing 
money on the investment. Lastly, firm C was mostly 
interested in cost minimization. 

A more detailed overview of the optimization model, 
the data used in the optimization and the case study 
participants can be found in [12]. 
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Table 1. Optimization results for the nine main scenarios considered 

     
 

   
(a) Z𝑃𝑃𝑧𝑧 scenario (b) Z𝑃𝑃𝑢𝑢 scenario (c) I𝑃𝑃𝑚𝑚 and I𝑃𝑃𝑢𝑢 scenarios 

   
(d) K𝑃𝑃𝑚𝑚 scenario (e) K𝑃𝑃𝑢𝑢 scenario (f) C𝑃𝑃𝑚𝑚 and C𝑃𝑃𝑢𝑢 scenarios 

Fig. 3 Optimal capacities of DES installed for the different scenarios (except for: ZPm where the NPV is neg.; IPm and IPu 
which are shown jointly, as they only differ w.r.t. the hot water storage unit; CPu yields the same optimal capacity as CPm) 

5. RESULTS 
This section reports on the findings from the 

optimizations conducted. The integration of DER in the 
existing energy systems always resulted in positive 
economic (NPV, ROI, payback time) and ecological (GWI) 
effects. Even for low energy prices (𝑃𝑃𝑚𝑚), integration was 
beneficial. One exception was the Z𝑃𝑃𝑚𝑚 scenario, where 
low prices were assumed for inconsistent demands, 
leading to a negative NPV. In all other scenarios, the 
integration yielded returns on investment (ROI) between 
12.46 and 47.59%. Payback times ranged between 2.4 
and 7.9 years. Economically all optimizations resulted in 
a decrease in the GWI, for firm Z the GWI value even 
turned negative, due to the credit given for the 
renewable electricity that is fed into the grid (net 
metering). 

The resulting outcomes of solving the objective 
functions and the respective sizing of the components 
can be seen in Table 1 and Fig. 3, respectively. 

The sizing of the installed DER depends highly on the 
prices charged for power taken from the grid. This can be 
seen either when looking at the amount of PV installed 
for firm Z in the Z𝑃𝑃𝑧𝑧 and Z𝑃𝑃𝑢𝑢 scenarios or from the CHP 
amounts installed for the K𝑃𝑃𝑚𝑚  and K𝑃𝑃𝑢𝑢  scenarios. For 
firm Z, the installed PV rose by 26.2% when switching 
from the price of the utility provider to the higher price Z 
is paying in the Z𝑃𝑃𝑧𝑧  scenario (Fig. 3(a), (b)). Note the 
different scales in Fig. 3. CHP is affected by the different 
prices because its produced electricity is competing with 
the electricity taken from the grid. Therefore, higher 
prices charged make bigger CHP capacities profitable. 
For the two scenarios, the switching from the market 
price to the utility price led to an increase in CHP capacity 
of 118.75% (Fig. 3 (d) and (e)). To make use of the surplus 

Criterium Unit Z_Pz Z_Pm Z_Pu K_Pm K_Pu I_Pm I_Pu C_Pm C_Pu
NPV € 431.87 negative NPV 222.69 3,637.79 17,991.95 3,308.55 13,544.67 4,165.81 22,310.38
GWI ktCO_2-eq/a -116.98 X -57.67 14,589.16 14,531.00 12,905.78 12,905.78 32,842.01 32,801.88
ROI % 0.2230 X 0.2236 0.1675 0.4162 0.1645 0.3572 0.1676 0.4759
Amortisartion a 4.48 X 4.47 5.97 2.40 6.08 2.79 5.97 2.10

Cap [MW]: 
* PV:  0.34 
* STH: 1.59 
* BAT: 0.09 

Cap [MW]: 
* PV:  8.35 
* CHP: 2.30 
 

Cap [MW]: 
* PV:  8.35 
* STH: 2.00 
* CHP: 1.40 
* HP:  0.07 

Cap [MW]: 
* PV:  8.35 
* STH: 1.79 
* CHP: 0.64 

Cap [MW]: 
* PV:  8.35 
 

Cap [MW]: 
* PV:  0.27 
* STH: 1.45 
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heat additional heat storage capacity was installed as 
well. 

The amount of PV installed in the K𝑃𝑃𝑢𝑢 , I𝑃𝑃𝑢𝑢  and 
community scenarios gave no evidence on the influence 
of the electricity prices on the installed DES capacities 
since the maximal capacity of PV was installed each time. 

For the case study, CHP installation usually 
dominated HP installation. This has two reasons. To 
explain the first reason the price of electricity should be 
compared to the gas price and related to the HP´s COP. 
The COP of the HP cannot exceed 4 and the HP 
transforms electricity into heat energy. The market 
electricity price is about two times the gas price. For this 
scenario, HP use could be feasible. For the other 
scenarios, the relation between the electricity and gas 
price is larger than a factor of 4. Whenever this is the case 
using the HP with electricity from the grid is not feasible 
anymore. The alternative would be using electricity 
produced in the DES but, since demands were 
consistently high and direct consumption was favored, 
this is rarely the case. The second reason for not 
installing HP capacity was its parametrization. The HP´s 
flow temperature was set to 70° C. However, HPs are 
most effective (and thus energy-efficient) at low flow 
temperatures. This as well made the usage of the 
technology less favorable. 

Battery storage was only used in the Z𝑃𝑃𝑧𝑧  scenario 
(Fig. 3(a)). Here P2P trading was not allowed, and the 
demand fluctuated over a day’s time span. The battery 
was able to optimize PV usage for this scenario. In the 
other scenarios, the demand was always high when PV 
was available; therefore, all electricity produced could be 
consumed directly and did not need any energy storage. 

 
Fig. 4 Optimal DES capacities, scenarios 19 and 20 

The usage of P2P trading in the community scenarios 
yielded both, economic and ecological benefits. 
However, the effects were restricted by the maximal 
rooftop area available for PV installation. The effects can 

be seen in the scenarios 19 and 20 (Fig. 4), where PV 
restrictions were disregarded. The NPV at market prices 
was more than 4.5 times as high as in the C𝑃𝑃𝑚𝑚 scenario 
and a GWI reduction of 12,769 or 19,091 ktCO2-eq/a was 
possible compared to the C𝑃𝑃𝑚𝑚 scenario. 

Lastly, the effect of P2P trading on installation size 
can be seen when comparing the Z scenarios with the 
energy community scenarios. When firm Z integrates PV 
itself, the full rooftop capacity is not used for any 
scenario. In contrast to that, rooftop capacity of Z is 
always used to the maximum when cooperating with the 
other firms. 

6. DISCUSSION 
The limitations of the case study are that 

unrestricted P2P trading is assumed, uncertainties in 
electricity and technology prices are ignored, and 
changes in the future energy mix of the utility grid are 
uncertain. Note that the price development is 
particularly important due to its double impact on the 
simulation: it affects the economic benefits but also 
influences the amount of DES installed. Furthermore, the 
case study is limited to firms with only gas and electricity 
(as power input and cooling is not included). However, 
this limitation can easily be overcome by making minor 
changes to the underlying optimization model. 

Despite its limitations, the case study results allow to 
derive policy implications for future users and legislators 
concerned with REs. One big limitation for integrating 
DES is the restricted possibility of using energy 
generation technologies. Even though demands were 
high and optimization without limits recommended high, 
capacities of PV, the area available for the installation of 
PV was very limited. 

Interviewing the CEOs of the firms investigated 
confirmed that the willingness to invest in DES is high and 
firms are searching for ways to become carbon-neutral. 
Legislators could support the firms’ ambitions of 
becoming more sustainable by allowing for the 
installation of PV at other locations and the virtual usage 
of the electricity generated for self-consumption. 
Another possibility would be the lifting of limitations 
related to wind power generation, enabling the 
installation of wind turbines in the proximity of industrial 
areas. Another important barrier to integration of more 
DES was the lack of information. During the research for 
the case study, authors became aware that the 
information available on the profitability and sizing of 
DES in the industry is still scarce. 

Executives did not know about the economic factors 
of DES in the industry, and experts, including those from 
PV-installation companies, even with exact demand 
profiles, were unable to calculate the optimal size of PV 
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installations on the firms’ rooftops right away, leaving 
interested energy-intensive firms with information gaps 
and hindering the spread of DES in industry. 

7. CONCLUSIONS 
We find that the integration of DES has positive 

effects on all firms and for all scenarios. The ROI was 
never lower than 12% and payback periods often shorter 
than four years. The GWI reduction was around 65% in 
the energy community scenario. For individual firms, a 
negative GWI was possible – as large amounts of surplus 
electricity are fed into the grid, and because the surplus 
is accredited for as GWI credits – while still yielding an 
ROI of 22%. 

The optimization was done for three different firms. 
Firm Z was relatively small, whereas firm I had no heat 
demand. DES integration proved feasible for all three 
firms. Economic and GWI benefits were high for the firm 
having electricity demand only (NPV: 13,545 k€ / GWI 
reduction: 5,691 ktCO2-eq/a); it increased for firms having 
heat demand (NPV: 17,992 k€ / GWI reduction: 6,793 
ktCO2-eq/a) and increased further when P2P trading was 
possible (NPV: 22,310 k€ / GWI reduction: 7,293 ktCO2-

eq/a). Technically speaking, since the optimization is 
based on a firm´s demand, optimization results are 
different for firm and optimization must be run 
individually. When simulation is done for other firms in 
other scenarios, the input parametrization must be 
checked carefully, since uncertainty is high regarding 
demands, prices, tariffs, weather, and their respective 
future development. 

Since no restrictions were assumed for energy 
sharing, future works could implement different P2P 
setups, fitted to the particular conditions. This could also 
be used to evaluate the effects of different P2P trading 
mechanisms on the optimal design and operation 
configurations. Also, subsequent research could 
implement other DES i.e.: electrolysis, storage and fuel 
cells for hydrogen. Lastly, improvements in the TSA could 
allow for global optimization. 

There is scope for further research. For instance, 
different P2P setups could be investigated to model real 
world market situations; an improved TSA could be 
conducted to identify also globally optimal solutions; and 
the implementation of other DES, such as electrolyzers, 
hydrogen storage and fuel cells seem a fruitful expansion 
of the current research and scope of the analysis. 
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