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ABSTRACT 
 In order to build an accurate model of heavy-duty gas 
turbine, a dual-driven approach is proposed based on 
operational data and intelligent genetic programming 
considering rotational speed, inlet/outlet temperature, 
pressure and generation power. The input-output 
thermodynamic characteristics of the compressor are 
obtained by genetic programming and net generation 
power of gas turbine is expressed by polynomial fitting 
formula equation, whose coefficients are obtained by 
least square method. Results show that all the models to 
calculate temperature ratio, pressure ratio and air mass 
flow ratio of compressor have a good accuracy, which of 
temperature ratio can reach 0.01. The accuracy of model 
to calculate generation power value can reach 0.04. This 
method for holistic modelling can be applied to other 
kinds of heavy-duty gas turbine. 

Keywords: heavy-duty gas turbine, genetic 
programming, dual-driven approach, generation power 

NONMENCLATURE 

Abbreviations 
GP Genetic programming 
LHV Low Heat Value 
IGV Inlet guide vane 
Symbols 

n  Corrected rotational speed 

m  Corrected mass flow 
T Temperature(K) 
G Mass flow(kg/s) 
h Specific Enthalpy(J/kg) 

γ Specific heat ratio 

P Pressure(kPa) 

η Efficiency 

H Enthalpy(J) 
W Power generation 
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1. INTRODUCTION
Electricity demand is predicted by International

Energy Agency to increase by more than 1000 terawatt-
hours in 2021 which is well above pre-pandemic levels. 
Gas turbine and combined-cycle gas turbine are being 
adopted in more and more countries [1]. Firing 
temperatures are getting higher and higher, which can 

reach 1500℃, 1600℃ and 1700℃ [2,3]. Meanwhile, 
cooling requirements are increased, and cooling 
structure is complex [4-5]. Those make many difficulties 
on building gas turbine model. 
  Traditional modelling for gas turbine is based on the 
components’ characteristic maps and thermodynamic 
laws. Compressor and turbine performance maps are 
usually obtained by stage-stacking method, which 
requires specific blade profile size, or from commercial 
software, or from manufactures. In fact, it is hard to 
obtain specific blade profile size and components’ 
characteristic maps due to manufactures’ commercial 
secret. Therefore, traditional modelling is not suitable 
when components’ characteristic maps are missing. 

Some research improved traditional modelling 
method, where components’ maps are obtained by 
introducing corrected factor or adaptive factor [6-12]. 
The characteristics of components can be obtained by 
this method, but only part of the actual operational data 
is considered for correction, and it is not directly related 
to the actual operational data.  

Data-driven model is a novel method to build gas 
turbine model, which is based on the field data and 
reduces dependence on components’ size. A. 
Mehrpanahi [13] took the neural network (NN) method 
and the derived functions of linear regression (LR), shaft 
dynamic (SD)-based function, and nonlinear auto-
regressive exogenous (NARX) and Hammerstein-Wiener 
(HW) fitted structures to generate dynamic model based 
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on condition monitoring data in the start-up mode. M. 
Basso [14] built a nonlinear autoregressive with 
exogenous inputs (NARX) model of PGT10B1 gas turbine. 
Elias Tsoutsanis [15,16] used a function of corrected 
mass flow rate mc and corrected rotational speed to 
express the compressor pressure ratio and the 
compressor efficiency. A fifth-order polynomial function 
is used to express the turbine map. The efficiency of 
turbine is fitted by a trigonometric function. Power 
turbine map is fitted by a polynomial function of the 
fourth order and its efficiency is represented by a two 
term exponential model. 

No matter which method, in order to obtain the 
mathematical expression of components, the form of its 
function is always needed. However, multi-stage 
extraction from compressor may cause the form of the 
function changes. Fig.1 shows typical cooling extraction 
from different stage in the compressor. When partial 
cooling air is extracted, the corrected mass flow is 
changed, which caused the function to need fixing. 
However, when the cooling extraction occurs in many 
stages, the function needs to be modified constantly, and 
the work of obtaining the function form increases. In this 
research, genetic programming [17,18] is a convenient 
way to describe the function relationship of input and 
output parameters. F. Safiyullah [19] used genetic 
programming to build actual isentropic head model for 
gas compressors. The deviation between the empirical 
relations of original equipment manufacturer and actual 

isentropic head is used to predict the performance 
degradation. 
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Fig.1 Typical cooling extraction from different stage in 

the compressor 
In this research, GE9FA is taken as research object. 

Fig.2 shows the logic frame of this research. The field 
data is obtained from Ban shan Power Plant. Combined 
with field data, thermodynamic cycle is simplified by 
taking the compressor and turbine as a whole, 
respectively. The thermodynamic inputs and outputs of 
compressor and turbine are the focus. The input-output 
thermodynamic characteristics of the compressor are 
obtained by genetic programming. The net generation 
power of gas turbine is expressed by polynomial fitting 
formula equation, whose coefficients are obtained by 
least square method. Lastly, the reliability of the model 
is verified by independent field data sets. 
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Fig.2. The logic frame of this research
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2. METHODOLOGY  

2.1 Heavy-duty gas turbine description 

The GE9FA gas turbine unit in the Ban shan 
combined gas and steam cycle power plant is taken as 
research object. The Fig.3(a) shows the specific cooling 
process and air flow process of the unit, whose cooling 
process is complex. The axial compressor has 18 stages 

from 0 to 17. The cooling air is abstracted from the stage 
9, 13, 16 and 18 to the stage 3, 2 and 1 of turbine. Due to 
the lack of cooling thermodynamic parameters, it is 
difficult to build the detailed and accurate model of gas 
turbine. Therefore, the overall gas turbine model is built 
by simplifying the cooling process. Fig.3(b) shows the 
simplified thermodynamic process. The inputs and 
outputs of all the components are focused. 
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Fig.3. The structure of the GE9FA gas turbine 
 

                                                      

2.2 Field data processing 

The operational field data is from May 2020 to 
October 2021. According to the characteristics of 
combined gas and steam cycle, the steady state is 
defined that the variance of TOT in fifteen minutes is less 
than 0.5. 

15
2

4

1

1
( ) 0.5

15
i

i

T 


                   (1) 

In which, T4i is the turbine outlet temperature at i 
number, μ is the expectation of 15 numbers.  

2.3 Mathematical model of gas turbine 

Some assumptions are necessary in the modelling 
process.  

(1) The air or the flue gas is considered as ideal gas, 
whose thermodynamic properties are calculated by 
Dalton’s law of partial pressure based on polynomial 
fitting formula [20]. The composition of air is assumed to 
keep the constant. 

(2) The combustion efficiency is 0.995 and pressure 
loss in the combustor is 0.35.  

(3) When the load is over 200MW, the turbine is 
considered to be operate in the stagnation zone [21]. 

(4) The sum of air or flue gas leakage is 8.9kg/s [22]. 

2.3.1  Axial compressor 
The characteristics of axial compressor can usually 

be expressed by four parameters, which are 

c 1 1, , and cn m  . When the IGV is considered, it is 

necessary to add IGV to the characteristics. 

1 1( , , )c f m n IGV 
                        (2) 

1 1( , , )c f m n IGV 
                        (3) 

2.3.2  Combustion chamber 
The mass and energy balance is considered in the 

combustion chamber.  

3 2 fG G G 
                             (4) 

3 2 23 f b f fh G G LHV h G h G  
        (5) 

2.3.3  Axial turbine 
The assumption is made that the flow is chocked at 

the nozzle of the turbine. The input thermodynamic 
characteristics are described by Eq(6). 

3 3 3 30 30 30

3 3 30 30

m T R m T R

P P 
                     (6) 

2.3.4  Mathematical model of electrical power 
The net generation power is the work made by the 

turbine minus the work consumed by the compressor. 
Whether compressor consumption or turbine output, 
they can usually be expressed as the difference in 
enthalpy between inlet and outlet of working medium. 
However, due to the cooling air abstracted from 



  4 

compressor to turbine, the power is not the enthalpy 
difference of the inlet and outlet multiplied by the flow 
rate. Therefore, the generation power is assumed as the 
function of enthalpy of inlet and outlet of compressor 
and turbine. 

1 1 2 2 3 3 4 4W H H H H                     (7) 

The unknown values of empirical coefficients are 
estimated by the least squares method. The criterion of 
estimation has a following form. 

mod 2

1

( )
min

n

el meansn
i i

i

W W




           (8) 

2.3 Genetic programming for the characteristics of 
compressor 

Genetic programming [17] is a method for 
optimizing both the structure and parameters of an 
input-output map. The mapping can be represented by 
the recursive function tree, in Fig.4. There are four 
components, which are data set, actuation, sensors and 
constants, and functions. Control law is the mapping of 
inputs and outputs, which is the target. Actuation is the 
dependent variable. Sensors are variables. Functions are 
mathematical symbols and common functional forms, 
which are +, -, x, /, sin, cos, log, exp and tanh in this 
research.  
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Fig.4 The recursive function tree 

Fig.5 shows the process of obtaining compressor 
input-output characteristics by GP. Firstly, it is necessary 
to make clear the independent and dependent variables, 
which is used to determine sensors. According to field 
data and thermodynamic calculation, the compressor 
outlet mass flow corresponding to the steady state can 
be obtained. Therefore, the outlet mass flow can be 
described by the m1, n1 and IGV. Meanwhile, the 
temperature and pressure ratio of inlet and outlet can 
also be described by m1, n1 and IGV. Meanwhile, fitness 
function is required to build. The value of fitness J is set. 
When fitness meets the requirements or generation 
reaches the maximum set value, the program is stopped. 
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Fig.5 The process of obtaining compressor input-output 

characteristics by GP 

3  RESULT AND DISCUSSION 

3.1 Operational data 

The steady state point accounts over 120000. Taking 
the generation power as an example, the processing of 
other field measured parameters is similar to the 
generation power. Fig.6(a) shows the generation power 
at steady state from May 2020 to October 2021. In order 
to facilitate calculation, the field data is taken through 
the interval 10, as shown in Fig.6(b). Compare the data 
before and after interval fetching, and the field data 
trend remains unchanged. 12000 groups of field data 
sets are selected as the research object. The first 10000 
groups of field data sets are used as training sets, and the 
last 2000 groups are verification sets or test sets.  



  5 

 

 
Fig.6 The generation power at steady state from May 

2020 to October 2021 

3.2  Model validation  

According to the known design point parameters, 
inlet and outlet thermodynamic parameters of 
combustor can be calculated, which are used to compare 
with the designed point, as shown in Table 1. T3 is a 
dominant parameter to judge the rationality of 
thermodynamic calculation. The relative error between 
T3 from model and from designed point is 1.36%. 
Meanwhile, the air flow at the inlet of combustion 
chamber is estimated. All the relative errors are within 
1.5%. Therefore, thermodynamic model is reasonable 
and reliable. 
Table 1 Comparison between value calculated by model 
and designed point 

Parameters 
Value from 

model 
Designed 

point 

T1(K) 288 288 
P1(KPa) 99 99 
G1(kg/s) 645 645 

T3(K) 1714 1691 
T4(K) 888 888 

3.3  Input-output characteristics of axial compressor  

The function of pressure ratio is obtained by GP,  

Πc=(((exp(S1) .* (cos(In(exp((-1.839)))) + 
cos(cos(tanh(In(S1)))))) .* ((2.696 + (/(cos((exp(S2) + ((-
0.8836) .* 3.036))),(/(sin(((/(S2,9.421)) + 
sin(exp(In(exp(In(S0))))))),1.528))))) - cos(((/(In((/((-
1.815),S1))),((-6.814) + exp(tanh(In(S1)))))) - (-5.015))))) 
+ (In(sin(((/(S2,9.421)) + sin(exp(In(exp(In(S0)))))))) .* 
In((/((cos(cos(exp(exp(sin(exp(sin((S1 + In(S1))))))))) + 
cos(cos(exp(exp(sin((S1 + (exp(S2) + ((-0.8836) .* 
3.036))))))))),((-2.235) .* ((cos(exp((/(tanh((In(S1) - (-
5.015))),1.528)))) .* (-0.3086)) + (exp(9.506) + exp(((-
0.8836) .* 3.036)))))))))). 

Where S0 is IGV, S1 is corrected mass flow, S2 is 
corrected rotational speed. 

Fig.7 shows the result of pressure ration by GP. 
Fig.7(a) shows the best fitness in each generation. After 
generation 70, the best fitness almost keeps the 
constant, which is converged. Fig.7(b) shows the 
pressure ration comparison between field data and that 
from GP. Fig.7(c) and Fig.7(d) shows the relative error 
distribution between field data and that from GP in the 
training set and test set, whose are in high coincidence. 
In the whole data set, the accuracy of pressure ration 
function can be considered to be within 0.04. 
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Fig.7 The result of pressure ration by GP 

The function of temperature ratio of inlet and outlet 
compressor is obtained,  

Πt =exp(((/(((/((/((tanh(In(S1)) .* 6.883),((cos((-
2.692)) .* (/(S0,(-6.595)))) .* (/(S0,(-6.595)))))),cos((-
5.304)))) .* (-3.392)),In(5.274))) + 
(/(sin(S2),cos((/((/((/(sin(((/(((-1.315) .* tanh(sin((/(S0,(-
6.595)))))),(cos((-2.692)) - (/(0.165,((cos((-2.692)) .* 
cos((-2.692))) .* (/(S0,(-6.595))))))))) + 2.289)),((/(sin((((-
2.315) + S0) - (/(S0,7.009)))),(cos((-2.692)) - In(S1)))) + 
2.289))),((/(sin((sin((((-2.315) + S0) - (/(S0,7.009)))) - 
(/((/(((-5.73) .* 6.883),(((-9.783) .* (0.6062 - (-2.799))) .* 
(cos((-0.1671)) .* ((-9.247) .* (-
9.562)))))),In(S1))))),(tanh((-9.975)) - sin(S2)))) + 
2.289))),((cos((-2.692)) .* (/(S0,(-6.595)))) - ((/(S0,7.009)) 
- (/(((-0.6787) - exp(cos(sin((7.893 - 
(/(S0,7.009))))))),exp((tanh((S2 + cos((/(((-6.364) .* 
S2),In(4.02)))))) + tanh((sin((/(S0,(-6.595)))) - 
6.778))))))))))))))) 

Fig.8 shows the result of temperature ration by GP. 
Fig.8(a) shows the best fitness in each generation. After 
generation 60, the best fitness almost keeps the 
constant, which is converged. Fig.8(b) shows the 
pressure ration comparison between field data and that 
from GP. Fig.8(c) and Fig.8(d) shows the relative error 
distribution between field data and that from GP in the 
training set and test set, whose are in high coincidence. 
In the whole data set, the accuracy of pressure ration 
function can be considered to be within 0.01. 

 

 

 
Fig.8 The result of temperature ratio by GP 

The function of air mass flow ratio of inlet and outlet 
compressor is obtained,  
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7.676))))))),(-9.474))) .* sin(((/((/((/(((((/((-3.623),(/(S1,(-
2.034))))) + (tanh((-2.533)) + (-6.339))) - sin((/((-
7.053),S0)))) + sin(((9.365 .* (/((-7.053),S0))) .* (-
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7.676)))),cos(sin(((9.365 .* (/((-7.053),S0))) .* (-
7.676)))))),cos(sin((4.18 .* ((9.365 .* (/((-7.053),S0))) .* 
((-0.8205) + 3.75))))))),(-9.474))) - ((9.365 .* cos(S2)) .* (-
7.676))))) - cos((tanh((/((/((/(((tanh((9.365 .* ((-0.8205) 
+ 3.75))) - sin((9.365 .* cos(2.529)))) + sin(((9.365 .* 
(my_div((-7.053),S0))) .* (-7.676)))),cos(sin(((9.365 .* 
cos(S2)) .* (-7.676)))))),cos(sin(((9.365 .* cos(S2)) .* 
sin((9.365 .* (my_div((-7.053),S0))))))))),(-9.474)))) .* 
sin((cos(S1) - ((9.365 .* cos(S2)) .* (-7.676)))))))))) 

The result is similar with the pressure ratio and 
temperature ratio. Fig.9(a) and Fig.9(b) shows the 
relative error distribution between field data and that 
from GP in the training set and test set, whose are in high 
coincidence. In the whole data set, the accuracy of 
pressure ration function can be considered to be within 
0.025. 

 
Fig.9 The relative error distribution in the training set 

and test set 

3.3 Generation power of gas turbine 

According to the least squares method, the 
coefficients of net generation power are obtained in 
Table 2. Fig.10 shows the result in the training set and 
verification set. The relative in the verification can be 
considered to be within 0.04. 
Table 2 The coefficients of net generation power  

Coefficient 
1  2  3  4  

Value -6.258 
e-05 

7.971
e-07 

-2.481 
e-08 

6.078 
e-06 

 

 
Fig.10 The result in the training set and verification set 

4  CONSLUSIONS 

1) When heavy-duty gas turbine is complex and 
components’ characteristics are lack, the simplified 
model can be constructed based on field data and 
thermodynamic laws, which can be used to monitor the 
operation performance.  
2) Input-output characteristics of compressor can be 
obtained by genetic programing. The function of 
temperature ratio, pressure ratio and air mass flow ratio 
are in good agreement with the actual law. The function 
of temperature ratio has the best agreement with the 
actual law, whose accuracy can reach 0.01.  
3) The net generation power can be expressed by the 
inlet and outlet enthalpy of compressor and turbine, 
whose accuracy can be within 0.04. 
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