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ABSTRACT 
 Nonintrusive load monitoring (NILM) deconstructs 
aggregated electrical usage data into individual 
appliances. The dissemination of disaggregated data to 
customers raises consumer awareness and encourages 
them to save power, lowering CO2 emissions to the 
environment. The performance of NILM systems has 
increased dramatically thanks to recent disaggregation 
methods. However, the capacity of these algorithms to 
generalize to various dwellings as well as the 
disaggregation of multi-state appliances remain 
significant obstacles. In this paper, we propose an energy 
disaggregation approach by using socio-economic 
parameters. The suggested approach helps in creating 
more accurate load profiles, which improves the 
accuracy and helps in better detection of the appliances. 
The proposed model outperforms state-of-the-art NILM 
techniques on the PRECON dataset. The mean absolute 
error reduces by 5% - 10% on average across all 
appliances compared to the state-of-the-art. Thus, 
improving the detection of the target appliance in the 
aggregate measurement. 

Keywords: NILM, LSTM, advanced energy technologies, 
energy conservation in buildings, energy systems for 
power generation, environment, and climate change 

1. INTRODUCTION
NILM, or load disaggregation, is a technique for

determining the operational status (on/off) and accurate 
power consumption of individual electrical loads using 
just the aggregated consumption as input. Due to 
advances in the field of machine learning and deep 
learning algorithms, this idea was initially suggested by 
Hart in 1992 [1], but it has been refined substantially over 
the previous decade. Many disaggregation methods are 
utilized in the residential sector and in industry sector 
[2], [3], As a non-intrusive mechanism, the strategies 
apply the least amount of intrusion and have minimal 
impact on consumer privacy, because measurements are 
taken from a single source (aggregated load) and there is 
no need to deploy additional equipment.  

Having access to appliance-specific data instead of 
whole-house measurements has a variety of advantages 
for both consumers and energy companies. Consumers, 
for example, may better understand their energy usage 
since they can see which appliances use the most energy. 
As a result, individuals will be better prepared to make 
energy-related decisions. Most of the customers are 
unaware of how much energy they use or their 
appliances environmental effects. Therefore, Increased 
awareness may result in more reasonable appliance 
usage. Consumers may choose to use less of their high 
energy-consumption equipment and, in some situations, 
replace the inefficient appliances or use CO2-emitting 
appliances more efficiently. 

Furthermore, according to the International Energy 
Agency's (IEA) "Net Zero by 2050" study, the energy 
sector accounts for three-quarters of global greenhouse 
gas emissions [4]. Furthermore, as global energy demand 
grows faster than supply, existing power grid systems 
face major problems in terms of efficiency and 
dependability. The restructuring of electrical 
infrastructure is crucial on the way to zero CO2 emissions 
by 2050. The combination of increased computing power 
and unique modeling and simulation capabilities allows 
for a seamless transition from traditional grids to the 
smart grid age [5]. Smart grids are expected to integrate 
assets such as Distributed Energy Resources (DERs), 
Electric Vehicles (EVs), and Energy Storage Systems 
(ESSs), as well as intelligent services, to unlock the 
flexibility potential that will allow for more efficient 2 
Copyright © 2020 ICAE energy generation, distribution, 
and consumption. Nonintrusive load monitoring (NILM) 
is a service that helps achieve this goal by evaluating the 
consumption of individual appliances in a facility.  

2. RELATED WORK
For many years, Deep Neural Networks (DNN)

techniques have been used to disaggregate energy [6], 
[7]. These state-based methods are mostly utilized for 
low-frequency (less than 1 Hz) monitoring, which needs 
less expensive gear. Recurrent neural networks [6]-
based methods, such as LSTM [8], [7], or Gated Recurrent 
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Unit [9], have mostly been proposed because they are 
ideally suited for 1D time-series data. The authors of [10] 
present a Bayesian optimized bidirectional LSTM model 
for NILM that extends the RNN. 

High-frequency data has more load features than 
low-frequency data. The harmonic approach was 
improved in [11] and [12]. [11] employed total harmonic 
distortion rate, power, and current harmonics as 
characteristics to construct similarity scores to achieve 
load detection. [12] proposed a method based on lower 
odd-numbered harmonics and a bagging decision tree 
(FFT BDT), which included two processes: obtaining 
magnitude and phase at lower odd-numbered harmonics 
and recognizing loads using a bagging decision tree. For 
NILM, a voltage-current (V–I) image-based technique has 
been developed. [13]. The reconstructed picture of a V-I 
trajectory was employed as input data for a 
convolutional neural network (CNN) to categorize 
appliances, especially resistive appliances, in the study. 
When compared to the other two approaches on the 
PLAID and IDOUC datasets, the proposed approach 
performs extremely well. [14] suggested a non-intrusive 
load detection system based on a two-stream 
convolutional neural network with current time-
frequency feature fusion. To extract the time domain and 
frequency domain characteristics, a time series image 
coding approach was devised first. The load detection 
performance was then improved by using a two-stream 
neural network integrating a gated recurrent unit (GRU) 
and a 2D-CNN. Finally, PLAID and IDOUC datasets were 
used to test it. 

Traditional CNN's extract characteristics by just 
feeding data in one way. These networks are unable to 
capture data that varies over time, such as time-series 
data. Recurrent neural networks (RNN) and LSTM [16] 
were offered as solutions to this problem. The LSTM, 
which records time-series patterns through two states in 
each cell, is the most widely used recurrent model today. 

3. METHODOLOGY 
A typical system-level NILM setup refers to one time 

calibration period to learn appliance signatures and store 
them in a database. Once the system learns these 
signatures it can identify the appliances based on those 
signatures whenever the switching event takes place 
[17]. These typical systems only use appliance signatures 
to train the model. In our approach we use socio-
economic parameters with the appliance signatures so 
this NILM setup can correctly identify those appliances 
based on those parameters, which can be seen in the 
results section that this NILM setup reduces the loss 
errors for correct appliance detection. 

In our methodology, we focus on different scenarios 
where test houses are held out during the training 
process, for each scenario we used the PRECON data. In 
the first scenario, we held out 5 houses and trained the 
modal on another house without using socio-economic 
parameters and calculated the average mean absolute 
errors. In the second scenario we again held the same 5 
houses and trained the modal on the same other house 
but this time we used the socio-economic parameters by 
attaching them before the training so our modal could 
train based on these weights. In another scenario we also 
used 20% of the data of each house for training the 
modal and then validated using the rest of the data, we 
named it “results on seen data and unseen data”. 

We trained the proposed model through supervised 
learning. We used the optimizer 'Adam' with loss 
function 'Root Mean Square' with a dropout rate 
initialized at 0.3. The model contains six groups of layers 
with dimensions input, 64, 128, and 256 respectively 
with a dense layer attached at the end with this stacked 
LSTM architecture as shown in Fig 1 and Table I. 

 
TABLE I 

NUMBER OF HIDDEN NEURONS AND OUTPUT SHAPE OF 
LSTM BLOCK 

 

Name Output Shape # Of Param. 

LSTM layer 64 22,528 
LSTM layer 128 98,816 
LSTM layer 256 394,240 
Dense 1 257 

 

 
Regardless of the appliance type all the 

hyperparameters are fixed and all the experiments are 
run on a maximum of 100 epochs using the batch size 60. 

4. EXPERIMENTS 
In this section, we discuss the experiments and 

present comparisons with state-of-the-art methods with 
and without socio-economic parameters to validate the 
effectiveness of our approach. 

4.1 Dataset 

The PRECON dataset is used for our experiments, this 
reference dataset is a set of 42 houses. Each house data 

 
Fig. 1. Stacked LSTM Architecture 
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was collected over the course of one year using smart 
meters. Aside from power usage statistics, various home 
attributes are also recorded in this dataset. Some of 
these attributes are summarized as. Total number of 
people living in the house, their age groups, property 
area of the house etc. Other than this, all the other 
important electrical loads of the house are also recorded 
which include the number of LED lights, fans, washing 
machines, electric iron, tube-lights, electric heaters, 
water pumps, refrigerators, electronic devices, and 
water dispensers etc. 

4.2 Training Set and Test Set 

The house 4 in the PRECON dataset is used as the 
train set. It contains Total Usage (Usage_kW), Air 
Conditioner in bedroom (AC_BR_kW), kitchen 
(Kitchen_kW), Air Conditioner in lounge room 
(AC_LR_kW), Air Conditioner in master bedroom 
(AC_MBR_kW) as shown in Table II. 

 
TABLE II 

OVERVIEW OF HOUSE 4 in PRECON DATASET 

 

 Usage AC_DR Kitchen … AC_BR 

2019-03-10 
11:05:00 

1.3084 0.008 0.5134 … 0.0268 

2019-03-10 
11:06:00 

1.4813 0.009 0.5088 … 0.0268 

 … … … … … 
2019-03-10 
11:07:00 

1.7421 0.008 0.5021 … 0.0270 

  
With this data a metadata file is given which contains 

other attributes of the houses. The other attributes of 
house 4 are shown in Table III. 

 
TABLE III 

METADATA OVERVIEW OF HOUSE 4 in PRECON DATASET 

 

Attributes Value 

Property Area sqft. 5445.01 
Number of people Living 7 
Total number of Rooms 7 
Number of Electric Heaters 0 
Number of UPS 2 
Number of Fans 10 
Number of Refrigerators 3 
… … 
Number of Water Pumps 1 

  
To create the train and test sets we treated our 

static features as fixed temporal data and made a 
temporal dimension for each of our selected socio-

economic parameter and appended them with our house 
4 data. This dataset is then used to train the modal. After 
the model training is completed, the data from the 
remaining houses in the PRECON dataset is used to test 
the model’s performance and versatility. 

5. RESULTS 
In this section, we conduct extensive experiments and 
make comparisons. We conducted experiments on 2 
appliances kitchen and air conditioner on 5 different 
houses with socio-economic parameters and without 
socio-economic parameters. We have divided our 
results into following 3 sections for comparisons. 

5.1 Without socio-economic parameters 

Table IV shows our results without parameters and the 
training set is only based on total usage of the house. The 
Model is trained on House 1 and other houses are used 
as test sets. Table V shows mean absolute error for the 
same trained model. 

TABLE IV 
MEAN SQUARE ERROR WITHOUT SOCIO-ECONOMIC 

PARAMETERS 

 Kitchen Air Conditioner 

House 1 0.0373 0.0447 
House 2 0.0171 0.1198 
House 3 0.0088 0.1185 
House 4 0.0274 0.2303 
House 5 0.0322 0.0774 

  
TABLE V 

MEAN ABSOLUTE ERROR WITHOUT SOCIO-ECONOMIC 
PARAMETERS 

 Kitchen Air Conditioner 

House 1 0.1636 0.1143 
House 2 0.0947 0.1259 
House 3 0.0562 0.2547 
House 4 0.0931 0.2360 
House 5 0.1170 0.1392 

 

5.2 With socio-economic unseen parameters 

We trained the model using socio-economic 
parameters with the total usage of the house and used 
completely unseen houses as test sets. The model gave 
better results if the model was trained on some of the 
same parameters of the same house. Table VI and Table 
VII shows our mean square error and mean absolute 
errors with socio-parameters. The Model is trained on 
House 1 and House 1 parameters other houses are used 
as test sets.  
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TABLE VI 
MEAN SQUARE ERROR WITH SOCIO-ECONOMIC 

PARAMETERS (UNSEEN DATA) 

 Kitchen Air Conditioner 

House 1 0.0309 0.0435 
House 2 0.2531 0.1673 
House 3 0.0600 0.0884 
House 4 0.0382 0.2867 
House 5 0.2720 0.0864 

 
TABLE VII 

MEAN ABSOLUTE ERROR WITH SOCIO-ECONOMIC 
PARAMETERS (UNSEEN DATA) 

 Kitchen Air Conditioner 

House 1 0.1441 0.1174 
House 2 0.4750 0.3440 
House 3 0.2244 0.2726 
House 4 0.1312 0.3242 
House 5 0.4491 0.2383 

  

5.3 With socio-economic seen parameters 

We created a new train set which is trained on 20% 
of the parameters of each 5 house. This model gave the 
best results the mean square error and mean absolute 
error were less then both previous models. Table VIII 
and Table IX shows the mean square error and mean 
absolute error of the model which is trained using 
socio-economic parameters and where 20% of the data 
is used in the training set. 
 

TABLE VIII 
MEAN SQUARE ERROR WITH SOCIO-ECONOMIC 

PARAMETERS (SEEN DATA) 

 Kitchen Air Conditioner 

House 1 0.0335 0.0435 
House 2 0.0078 0.0020 
House 3 0.0018 0.0662 
House 4 0.0354 0.0079 
House 5 0.0372 0.0010 

TABLE IX 
MEAN ABSOLUTE ERROR WITH SOCIO-ECONOMIC 

PARAMETERS (SEEN DATA) 

 Kitchen Air Conditioner 

House 1 0.1517 0.1174 
House 2 0.0600 0.0205 
House 3 0.0183 0.1879 
House 4 0.1149 0.0278 
House 5 0.1335 0.0174 

  

6. COMPARISONS 
In this section, we will compare our results of our 
models which were trained with and without socio-
economic parameters.  

Table X shows mean square error of all three 
models for kitchen data set. It can be seen from the 
results that the model trained by using the socio-
economic parameters reduced the mean square error 
and improved the model in prediction of the appliance. 
House 1,2 and 3 shows the effectiveness of socio-
economic parameters on the Model trained with these 

 

TABLE X 
COMPARISON OF MEAN SQUARE ERROR OF ALL THREE MODELS ON KITCHEN 

 Without parameters With parameters unseen data With parameters seen data 

House 1 0.0373 0.0309 0.0335 
House 2 0.0171 0.2531 0.0078 
House 3 0.0088 0.0600 0.0018 
House 4 0.0274 0.0382 0.0354 
House 5 0.0322 0.2720 0.0372 

 

 

TABLE XI 
COMPARISON OF MEAN SQUARE ERROR OF ALL THREE MODELS ON AIR CONDITIONER 

 Without parameters With parameters unseen data With parameters seen data 

House 1 0.0447 0.0435 0.0435 
House 2 0.1198 0.1673 0.0020 
House 3 0.1185 0.0884 0.0662 
House 4 0.2303 0.2867 0.0079 
House 5 0.0774 0.0864 0.0010 
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parameters. The loss relatively decreased as compared 
to the model which was trained without these 
parameters. 

Table XI shows mean square errors on air-
conditioner appliance. The model trained using the 
socio-economic parameters the mean square and mean 
absolute errors reduced drastically for all the five 
houses showing the effectiveness of using socio-
economic parameters. visualization.  

Fig. 3 and Fig.4 shows some graph visualization 
of true value and predicted value by the system of 
houses 2 and 4. The blue line shows the actual values of 
the appliance, and the red line shows the predicted 
values. The graphs show the data of two random days 
from the whole year. 

7. CONCLUSION 
The idea of NILM appears to have a prominent 

position as a future smart energy grid service, allowing 
users to gain control over their energy usage through 
enhanced awareness. The breakdown of energy use at 
the appliance level might also aid in the detection of 
abnormalities in equipment that are malfunctioning. 

This paper has proposed a non-intrusive load 
monitoring technique using socio-economic parameters 
on a LSTM Algorithm and verified its effectiveness 
through PRECON dataset. Compared with the traditional 
techniques the mentioned approach of using socio-
economic parameters with the house data reduces the 
losses of LSTM algorithm and showed better results in 
the detection of the appliance. 

In future work we would like to see the effectiveness 
of socio-economic parameters on other algorithms other 

than LSTM such as decision trees etc. We would also like 
to design a multi-headed network for this technique 
using time series data separately and socio-economic 
parameters as separate model and then concatenating 
both the outputs in the last layer. We believe this model 
can give even better results than our current 
disaggregation solutions. 
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