
Optimal design of an Aggregated Energy System with N-1 reliability

Alessandro Monchieri1, Alessandro F. Castelli1, Lorenzo Pilotti1, Emanuele Martelli1*

1 Politecnico di Milano, Department of Energy, Via Lambruschini 4, 20156, Milano  

* Corresponding author email: emanuele.martelli@polimi.it

ABSTRACT 
 This work presents a two-stage stochastic Mixed 
Integer Linear Programming model for the optimization 
of the design of an aggregated energy system (AES) (i.e., 
multi-energy systems, microgrids, energy districts, etc.) 
serving a university campus featuring electricity and 
heating demands. The off-grid system design is obtained 
by considering a set of representative periods for both 
demands by means of a carefully modified k-medoids 
algorithm. N-1 reliability is also considered in the model, 
by introducing the concept of “break-down scenarios” 
that allows the solution of the problem to be able to 
meet the user demands for every possible contingency in 
which one of the AES’s units fails. The effect of including 
N-1 reliability in the model is then showed by comparing
the optimal design obtained by considering such
approach against one with no break-down scenarios.

Keywords: multi-energy systems, microgrid, 
optimization, MILP, stochastic programming, reliability. 

NONMENCLATURE 
Abbreviations 
AES Aggregated Energy System 
BESS Battery Energy Storage System 
CAPEX Investment costs 
CC Compression Chiller 
COE Cost of Electricity 
CHP Energy Proceedings  
EE Electricity 
HP Heat Pump 
MES Multi-Energy System 
MILP Mixed-Integer Linear Programming 
NG Natural Gas 
OPEX Operational costs 
PV Photovoltaic panels 
TAC Total Annual Cost 
TESS Thermal Energy Storage System 
Sets 
U Set of the installable dispatchable units 
J Set of the available machines’ slots 
K Set of the representative periods 
𝑇 Set of the timesteps within a period 
BDS Set of the Break-Down Scenarios 
Variables 

z!,#,$,% 
1 if variable of unit u installed in slot j, during 
representative periods k, at time t is online, 
zero otherwise. 

1. INTRODUCTION
In the last two decades an increasing industrial and
scientific interest in aggregated energy systems (AES) has
been shown. These are energy systems integrating and
operating dispatchable generation and storage units, as
well as intermittent renewable energy sources in a
synergic way. These kinds of systems are able to serve
users characterized by one or more energy demands (e.g.
heat and electricity), while being economically
completive and less carbon intensive than traditional
solutions. In literature such aggregated energy systems
are called microgrids, energy districts or Multi-Energy
Systems (MES). An example of aggregated energy system
coproducing electricity, heating and cooling power can
be seen in Fig. 1. Despite the economic convenience of
an AES, its design is particularly challenging since it must
account for the operational constraints and part-load
performance of the units. Moreover, for different
applications (e.g., hospitals, schools, chemical processes
like refineries, off-grid villages/islands, military camps,
etc.) it is necessary to guarantee a high reliability level
(namely the ability of the system to operate under stated
conditions for a specified periods of time) on one or
more energy services. For example, the heating and
electric power demand of a hospital must be met also
during maintenance or failure of one or more AES
generation units. Similarly, the heating demand of a grid-
connected school should always be met throughout the
winter season despite any contingency. This reliability
requirement leads to the need of installing multiple
redundant units with a substantial increase in capital
cost.

This work proposes a MILP model and 
decomposition algorithm for the optimal design of AES 
with reliability requirements. In particular, the MILP 
model include the “N-1 reliability” requirement of the 
AES: at any time and day of the year, the optimized 
design can meet the user’s thermal and electrical 
demand even if one of the N installed units is not 
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available for the whole day (under maintenance or out of 
service).  
The model developed in this work can handle AES with 
energy storages and any type of units (combined heat 
and power units, heat pumps, etc.) without the need of 
including ad hoc constraints.  

 

 
Fig. 1 An example of MES serving a user with multiple energy 
demands. 

2. PROBLEM STATEMENT 
The problem can be formulated as follows.  

Given:  
•  The catalogue of energy conversion and storage 

technologies (e.g. thermal energy storage, CHP 
engine, PV panels, etc.), their available sizes 
(continuous), their part-load performance maps and 
operational limits (e.g., min-max load, ramp-up limit, 
start-up time, etc.), their investment and operating 
costs, 

• The user’s electricity and heating demand profiles 
Determine optimal AES design (i.e., selection of the 
energy technologies and their sizes) that minimizes the 
Total Annual Cost (TAC), subject to the following 
constraints (to be met at any time and any day of the year, 
even in case of fault of one AES unit (N-1 reliability): 
• Operational limits (ramping, performance curve, 

minimum up-/down-time, charge/discharge 
efficiency) 

• Electricity and heating energy balances. 

3. METHODOLOGY AND ASSUMPTIONS 
The optimization methodology consists in three 

main steps: (1) finding the representative operational 
periods, (2) formulating the two-stage stochastic MILP 
model featuring N-1 reliability (3) developing an ad hoc 
bi-level decomposition method for the solution of the 
problem. 

3.1 Representative operational periods  

The optimized MES design must consider the 
operation of the system across the lifetime/year. Since 
co-optimizing the design and hourly operation for the 
whole year would yield to excessive computational time, 
it is necessary to identify a few representative days. In 
this study, the most representative days are obtained by 
means of a modified version of the k-MILP [1] clustering 

algorithm. This clustering approach can identify at the 
same time NT “typical” and NA “atypical/extreme” days 
(24 hours). In this work, we considered 6 typical and 6 
atypical days. Among the “atypical” ones, two feature 
the yearly peak demand of Heat and EE respectively (Ex2 
and Ex6, Fig. 4), and one the minimum PV generation 
integral (Ex5). The other three extreme periods are the 
three remaining most “atypical” (i.e., different from the 
typical days) days of the year. 

3.2 MILP model and N-1 reliability 

The MILP model developed for this study is a two-
stage stochastic MILP with design variables in the first 
stage and operational variables in the second stage. Each 
typical and atypical day is considered as a scenario. The 
MILP shares many of the design and operational 
constraints reported in [2], while the ramping limits as 
well as minimum up-/down-time constraints can be 
found in [3]. In this study, a catalogue of different 
technology is considered, each one with continuous size 
and size-dependent performance (as in [2]). Each 
technology is associated to NU slots allocated in the 
design superstructure, in such a way it is possible to 
install at most NU units of the same type (see Fig. 2 
showing a case with 6 slots, 2 for ICE1, 1 for ICE2, 2 for 
HPs and 1 for boilers). 

The N-1 reliability is forced by adding to the 
stochastic MILP the “break down scenarios” (BDSs): for 
each typical and atypical day k, there are NS BDSs where 
one slot (i.e., unit allocated in the slot) is not available 
(fault or under maintenance for the whole day). Thus, if 
the index k denotes the typical/atypical day and the 
index j denotes the slot, these BDSs can be indicated with 
the notation BDSk,j. In addition to the NSx(NA+NT) BDS 
scenarios, the stochastic program contains (NA+NT) 
scenarios without failure where all the units of the slots 
are available.  Therefore, the stochastic MILP contains 
(NS+1)x(ND+ NT) scenarios. 

 
Fig. 2 Design super structure showing the number of machine 
slots available per technology. How BDSs model the N-1 
reliability is also shown. 

Since the BDSs are defined a priori (they do not 
depend on the optimization outcome), each scenario 
BDSk,j includes constraints which turs off whichever unit 
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is installed in slot j for each typical/atypical day k: This 
takes the following mathematical form: 

z!,#,$,% = 0 ∀u ∈ U,	 
∀t ∈ T	 (1) 

Finally, the objective function to be minimized is the total 
annual cost, sum of annualized capital (CAPEX) and 
operating (OPEX) costs.  

TAC = CAPEX ∗ CCR +-w$OPEX$
$

+-w&'(!,#OPEX&'(!,#
$,#

 
(2) 

with w$  and w&'(!,#  the probabilities of the 
scenarios. For the days without failure, such probability 
is essentially proportional to the number of occurrences 
of the typical and atypical days in the year (outcome of 
the clustering). On the other hand, w&'(!,#  is the 
probability of failure of whichever unit installed in slot j. 
In this work, we consider that in all NS BDSs are equally 
probable, featuring a probability equal to 1/NS (11.1%). It 
is worth noting that such low probability has a small 
influence on the objective function. Instead, the BDSs 
have a large effect on the constraints since operation of 
the AES must be guaranteed in all of them. 
If the N-1 reliability is excessively conservative, it is also 
possible to adapt the formulation to limit the probability 
of unmet demand to a certain percentage (e.g., 2%). 

3.3 Bi-level decomposition 

The two-stage stochastic program features a large 
number of variable and constraints due to the addition 
of the BDSs. Tackling it with a standard MILP solver 
requires days of computational time also on 
workstations. In order to find a close-to-optimal solution 
in practical computational time, we used  a modified 
version of the Iyer-Grossmann bi-level decomposition 
[4]. The basic idea is to first solve (at the upper level) the 
design problem with relaxed operation (i.e., relaxing the 
on/off binary variables). Then, for fixed design, the 
operational problem (lower level, or subproblem) is 
solved for the different scenarios. The value of objective 
function (TAC) is evaluated, and the upper-level solution 
is evaluated again by adding one or more cuts (i.e., a 
constraint which excludes the previously found design 
solution with the aim of exploring another one). The 
algorithm differs from the original one by the addition of 
an integer and sub-set cut in the case when the solution 
coming from the design problem at the current iteration 
is the same found by the operational subproblem in the 
previous one. This avoids exploring previously found 
solutions and thus improve the overall run time. The 
algorithm stops if the TAC does not improve after 20 

consecutive iterations or if the gap between the upper 
level and lower-level objective functions is below a 
certain tolerance. 

4. CASE STUDY AND RESULTS 
The above-mentioned methodology is applied to find 

the optimal design of a Multi-Energy System serving an 
academic campus with heating and electricity demand. 
The peak demands are approximately 7.5 MWth and 2.5 
MWel respectively. The catalogue of possible energy 
technologies and performance parameters are in Table 
1, with the number of available machines slots defining 
the superstructure of the problem. The NG cost is 
assumed to be equal to 33.2 €/MWhLHV (the average 
value in 2019 in Italy) [5]. 
The optimal design is evaluated for three different cases: 
a “nominal” case where no BDSs are considered, a “N-1” 
case where BDSs are considered just for the “typical” 
periods and a “N-1 extreme” case where BDSs are also 
considered in the “extreme” periods. In this way, the 
effect of considering the N-1 reliability in the model is 
assessed. In addition, the “N-1 extreme” case represents 
the worst-case scenario where machines failures are 
expected to happen also in the few days of the year 
characterized by the most challenging conditions, thus 
providing a very robust solution. 
The results of the optimization problem were obtained 
with workstation featuring an Intel® i9-10980XE CPU (16 
cores) and 64 GB of RAM. The bi-level decomposition 
stops when the percentage gap between LB and UB is 
lower than 1%. The design and operational problems 
were solved with Gurobi 9.5 [6]. 

4.1 Bi-level decomposition performance 

The MILP model used for the evaluation of the optimal 
design is challenging to solve, featuring up to 953435 
continuous variables, 388846 binary variables and 
2705996 constraints for the “N-1 extreme” case. By 
solving the model as a monolithic MILP, the 
computational complexity and size of the problem does 
not allow to achieve a gap lower than 5% after more than 
24 hours. 
By adopting the decomposition algorithm previously 
introduced, the computational time needed to get the 
optimal design reduces significantly. In fact, for the 
“nominal” case 17 minutes are needed (22 iterations), 
for the “N-1” case the run time was 6 hours and 32 
minutes (15 iterations), while for the “N-1 extreme” case 
the total execution took 11 hours and 11 minutes (18 
iterations). By looking at these numbers, it can be seen 
how the inclusion in N-1 reliability in the model 
significantly impacts the computational time. 
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Table 1 Most relevant parameters considered for the different technologies in this study. 
 Dispatchable conversion technologies 
 ICE1 ICE2 ICE3 HP Boiler 
Available machine slots 3 2 1 2 1 
Input NG NG NG EE NG 
Output EE, Heat EE, Heat EE, Heat Heat Heat 
Size range  EE 50-200 kWel 200-1434 kWel 1500-3949 kWel - - 

Heat 79-263 kWth 276-1626 kWth 1447-3461 kWth 351-35100 kWth 94-47200 kWth 
𝜂$ [%] 
COP [-] 

EE 33.8-37.2 37-41.7 43.6-45.8 - - 
Heat 53.4-48.9 51-47.2 42-40.2 351 94.4 

Capital cost [€/kWout] 649-627 €/kWel 627-398 €/kWel 396-366 €/kWel 723-177 €/kWth 84-50 €/kWth 
 Non-dispatchable technologies  Storage technologies 
 PV  TESS 
Specific investment cost 800 €/kWel,inst Specific investment cost 400 €/kWhth 

  Charge/discharge 
efficiency 95% 

  Self-discharge 1%/h 

Table 2 Optimal design for the different cases considered. 
  Nominal N-1 N-1 extreme 

ICE3 
EE [kWel] 1517 1517 1782 
Heat [kWth] 1462 1462 1680 

ICE2 
(1) 

EE [kWel] 425 1229 1101 
Heat [kWth] 522 1401 1262 

ICE2 
(2) 

EE [kWel] - 428 1016 
Heat [kWth] - 542 1264 

HP Heat [kWth] - 2843 3475 
Boiler Heat [kWth] 5692 3691 4626 

TESS Heat 
[kWhth] 

631 1772 1934 

PV EE [kWel] 1820 1820 2091 

4.2 Optimal designs comparison. 

The optimal designs for the three considered cases 
are presented in Table 2. For the “nominal” case, the 
optimal design corresponds to the installment of ICE3, 
one ICE2, a Boiler, a TESS and PV panels. This design 
represents the solution with the minimum cost, under 
the optimistic assumption that no unit can go out of 
service. In the “N-1” case the BDSs are considered just 
for the “typical” periods. By considering the contingency 
in which at most, but certainly, one unit fails, the design 
changes. One additional ICE2 is installed, as well as a HP. 
The same design, but with increased sizes, can be found 
in “N-1 extreme”. The reason behind this change in the 
design is certainly related to the contingency described 
by the BDSs. This can be easily understood by looking at 
Table 3, where the yearly operating hours for each unit 
is represented, for each BDSs. “N-0” is the scenario 
where no failure occurs, while “N-X” is the scenario 
where unit “X” is considered out of service. By looking 
Table 3 and Fig. 3, it can be understood that for the 
“nominal” case most of the EE demands is met by the PV 
during the day, while ICEs are operated mostly at night 
or to help meeting the demand when the PV generation 

is low. On the other hand, the Boiler operates in support 
of the ICEs, especially to cover the peaks of Heat 
demand. 

When looking at the cases when N-1 reliability is 
considered, similar conclusions can be made. At first, the 
reason why the number of operating hours of the unit 
that is supposed to be out of service in each BDS (e.g. 
ICE3 in N-ICE3) is different than zero for the “N-1” case, 
is because the scenario simulates the failure of the unit 
for all the “typical days” but the extreme ones. By looking 
at the “N-0” scenario, the HP mainly assist the ICEs for 
helping to meet the Heat demand, while the Boiler is 
used just for peaking. The number of operating hours of 
the Boiler substantially increases for the BDS where the 
HP is down (N-HP), to cover the lack of Heat generation. 
Regarding the ICEs, an additional ICE2 is installed both to 
cover the reduced EE and Heat generation occurring 
when one other ICE is offline and when the HP is out of 
service. 

The economic impact of N-1 reliability, applied 
both on all representative days and just on the typical 
ones, can be seen both in Table 3 and Table 4. At first it 
can be seen that the installment of bigger, more efficient 
ICEs (efficiency increases with the size), together with a 
HP that efficiently converts the EE generated by PV and 
ICEs into Heat, decreases the OPEX with respect to the 
“nominal” case. The increase in operational cost with 
respect to the “N-0” scenario is up to +5.4% and +4.9% 
when BDSs are considered. Despite the small difference 
in OPEX with the “nominal” case, the main difference is 
represented by the CAPEX term. In fact, the investment 
cost increase by +62.44% and +86.88% for the “N-1” and 
“N-1 extreme” cases respectively. This brings an increase 
in the TAC and COE of +16.63% and +23.05% for the same 
already cited cases. 
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Table 3 Yearly operating hours of each unit installed, for each 
considered case. 

Operating 
hours [h] ICE3 ICE2 

(1) 
ICE2 
(2) HP Boiler OPEX 

[k€] 
Nominal 6715 1499   1916 656.4 

N
-1

 

N-0 6870 14 1719 2132 118 632.3 
N-ICE3 124 6760 2346 1371 591 666.5 
N-ICE2 6870 14 1719 2132 118 632.3 
N-ICE2 7431 788 43 2081 220 645.7 
N-HP 5600 1233 1257 120 1889 646.6 
N-Boiler 6870 57 1719 2175 32 632.4 

N
-1

 e
xt

re
m

e  

N-0 5468 1177 921 2081 13 625.8 
N-ICE3 0 6694 2796 2081 18 656.5 
N-ICE2 5468 0 2095 1885 113 626.4 
N-ICE2 5469 2047 0 2081 19 628.1 
N-HP 4380 910 2082 0 1805 644.7 
N-Boiler 5461 1191 936 2081 0 626.0 

Table 4 Cost figures for all considered cases. 
 N N-1 N-1 extreme 

CAPEX [k€/year] 2766.43 4493.89 5169.88 
OPEX [k€/year] 656.39 638.77 631.12 
TAC [k€/year] 933.03 1088.16 1148.10 

COE [€/MWhel] 86.89 101.34 106.92 

Finally, by considering the abovementioned cost of NG 
and an electricity purchasing cost of 89.5 €/MWhel [5], it 
can be estimated the TAC related to meeting the energy 
demands using boilers (95% efficiency) for heating and 
the grid for electricity. With a yearly heating and EE 
demand of 7.8 GWhth and 10.5 GWhel respectively, the 
overall TAC would be 1217.6 k€/year (assuming boilers 
with 95% efficiency). Under this condition, the adoption 
of a MES would bring down the yearly costs of about  
-23.4% when N-1 reliability is not considered in the 
design phase. If this is taken into account, saving of  
-10.6% and -5.7% would be expected for the N-1 
approach is considered for just the typical days and for 
all representative periods respectively. 

5. CONCLUSIONS 

In the work the optimal design of a MES serving an 
academic campus is investigated. N-1 reliability is 
introduced by means of Break Down Scenarios, allowing 
the MES to meet the energy demands whenever at most 
one unit is out of service. The proposed methodology 
consists in the identification of typical and atypical 
periods of the year, the development of a MILP model  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 Daily operation for the considered typical and extreme (Ex) periods when the optimal design for the "nominal" case is considered.
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with N-1 reliability and the creation of a bi-level 
decomposition to find the optimal solution faster.  

Results show the impact of considering BDSs on just 
the typical days, and both the typical and atypical ones. 
With respect to the nominal solution (without N-1 
reliability), the design sees the addition of one ICE2 and 
one HP, as well as increased units’ sizes (except for the 
boiler). The overall economic impact is mostly related to 
an increase in CAPEX, that bring up the TAC and COE. In 
fact, despite the small difference in OPEX between the 
“nominal” and the “N-1” and “N-1 extreme” cases, an 
increase in capex of +62.44% and +86.88% is seen for the 
already mentioned cases respectively. This is reflected in 
higher TAC values of +16.63% and +23.05%. Despite the 
rise in TAC, the adoption of a MES is economically more 
convenient that meeting the energy demands in a more 
conventional way (purchasing electricity from the grid 
and using boilers for heat generation). In fact, with 
respect to this last solution, even the more expensive 
MES design coming from the “N-1 extreme” case 
features a -5.7% lower TAC. 

Additional effort must be done to validate this 
methodology, by applying it to different case studies 
where energy supply is critical (e.g. hospital, remote 
island, etc.). In addition, different MILP formulation 
based on similar approaches can be compared to assess 
for techno-economic assessment of the solutions. 
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