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ABSTRACT 
 Detailed energy consumption data is key to data-
driven urban energy modeling efforts. However, privacy 
considerations often prevent such data to be shared 
directly with researchers. Here, we present an approach 
based on the “15/15 rule,” used in several states in the 
United States, to enable energy data to be shared while 
protecting the information of individual customers. We 
do so based on a case study typical for urban energy 
data, where public information is combined with privacy-
sensitive data. We compare two implementations, 
showing that our custom algorithm achieves a 1,000 
times higher computational speed at only a 10% increase 
in information loss compared to a previously published 
clustering method. Our work aims to provide a 
mechanism to accelerate broader energy data sharing 
and serve as a baseline for similar efforts in different 
regulatory contexts, including potential future policy 
frameworks based on differential privacy. 

Keywords: energy data, urban building energy models, 
privacy, data sharing, clustering, algorithms 

NONMENCLATURE 
Abbreviations 

SVCE 
r-km
k-unique-nn

Silicon Valley Clean Energy 
Restricted k-means clustering 
k-unique-nearest neighbors clustering
(our custom clustering algorithm)

Symbols 
𝑌 

𝑋 

𝐾 
Ξ 
Θ! 
𝜎"# 
∆",%#  

Energy use data for each of 𝑁 customers 
(privacy-sensitive) 
𝑁 × 𝐷 matrix, indexed 𝑥!,# , containing 
building features (public knowledge) 
Minimum group/cluster size 
The set of rows still available for clustering 
The set of rows belonging to cluster 𝑞 
Contribution of row 𝑖 to variance in data 
Difference between rows 𝑖 and 𝜉 

1. INTRODUCTION

The analysis of large datasets can contribute to our 
understanding of urban energy use patterns and 
decarbonization pathways. In the context of urban 
building energy modeling, for example, such datasets 
usually contain information on energy consumption for a 
set of customers or buildings along with features for each 
of those buildings. Relating those features to the energy 
consumption profiles using a quantitative model can 
then inform efforts to reduce urban energy use and 
decarbonize the energy sector through urban planning, 
building design, and retrofit measures (e.g. [1]–[3]). 

However, sharing detailed energy consumption data 
along with contextual features for each profile is subject 
to privacy concerns and regulations (e.g. [3]–[7]). This is 
particularly the case for data containing energy 
consumption profiles with high temporal resolution and 
data containing detailed contextual features—the kind 
of data often most useful to researchers. Recent work 
has privacy-preserving approaches to sharing energy 
data (e.g. [5], [8]–[11]), but short-term applications must 
also fit into the existing policy context and be agreed on 
by the data sharing partners. 

Currently applied in California and certain other 
states in the United Sates, the “15/15 rule” states that 
shared energy data must be aggregated such that each 
data point include a minimum of 15 customers with no 
one individual customer’s load exceeding 15 percent of 
the group’s energy consumption [4], [5]. The goal of this 
rule is to protect the energy consumption profiles of 
individual customers. An alternative iteration of the rule, 
applied in some cases to residential customers, imposes 
a larger minimum group size but with no limitation to 
individual contributions to that group. Similar 
protections exist or are being developed in other parts of 
the world [10]. For example, Europe’s General Data 
Protection Regulation (GDPR) covers building energy 
consumption, such as smart meter data [7], [11]. 
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Through privacy-preserving data aggregation, some 
amount of information in the data is inherently lost [12]. 
The goal is to aggregate or modify data to comply with 
privacy standards while minimizing the information loss 
incurred for subsequent modeling efforts. 

Here, we present and compare two approaches to 
aggregate data into groups and then calculate summary 
statistics for each group to comply with the 15/15 rule. 
Our results are based on a real-world data collaboration 
case with a public-private community choice aggregator 
utility, Silicon Valley Clean Energy in California, USA. We 
focus on a dataset that consists of protected information 
(each customer’s energy consumption) as well as public 
information (properties of the building that each 
customer is located in). 

We describe two approaches to determine the 
groups, compare their performance in terms of 
computational time and incurred information loss, and 
discuss other privacy-preserving measures such as 
differential privacy. The methodological considerations, 
findings, and discussions resulting from this case study 
may also be helpful in different scenarios and contexts. 

 
2. ALGORITHM 

2.1 Data structure 

The raw dataset contains energy consumption data 𝑌 
(specifically, 15-minute interval electricity and natural 
gas consumption for one year) for each of 𝑁 residential 
and commercial customers. This data has been 
supplemented with 𝐷  features of the buildings and 
their urban context that each of these customers are 
located in. We name this set of feature data 𝑋 . The 
features include building square footage, floor-to-area 
ratio, the year of construction, the population density in 
the building’s surroundings, and similar properties. 
Features with a heavily tailed distribution, such as 
building square footage, have been log-transformed. 
Nominal data, such as building type (residential single-
unit, residential multi-unit, commercial, etc.) have been 
converted to dummies. Analysis using this data will aim 
to infer the relationship between building features 𝑋, 
along with weather data, and energy consumption 𝑌 , 
using regression-type models. 

The privacy-sensitive part of the data is the energy 
consumption vector 𝑌 . The building features 𝑋  are 
assumed to be public knowledge, as most of them are 
publicly available through tax assessor and other data. 
Even if they were not, an adversary possessing auxiliary 
information on 𝑋 gathered from third parties would be 
able to an individual customer in the dataset and obtain 
detailed information on their energy consumption 
patterns. 

2.2 Goal 

The goal is to aggregate the features 𝑋  and energy 
consumption profiles 𝑌 such that an adversary can no 
longer infer detailed information about an individual 
customer’s energy consumption even if they obtained 
the modified data. In our case, the modified data is kept 
on secure servers and not released publicly; the 
aggregation therefore acts as an additional barrier to an 
attack, but not the sole barrier.  

In line with the 15/15 rule, the set of features 𝑋 
needs to be aggregated to groups of at least 15 
customers each. This is equivalent to modifying the data 
in 𝑋 and 𝑌 such that for each group, all rows in 𝑋 are 
identical, and all energy consumption profiles 𝑌  are 
changed to the average of that group. This measure 
satisfies the first half (the first “15”) of the 15/15 rule, 
which is the focus of this paper. We discuss how our 
approach can be extended for compliance with the 
second half in the discussion section. 

2.3 Approach overview 

We modify predictors 𝑋 such that they form groups 
of 15 identical rows or more. We do so in two steps: (1) 
cluster the 𝑁  rows in 𝑋  into groups of 15 or larger; 
and (2) homogenize the data within those groups so that 
each row is identical. The goal is to accomplish the 
desired outcome while introducing as little noise and 
therefore losing as little information contained in the 
original data as possible. 

As a result of the fact that 𝑋  without 𝑌  can be 
assumed to be public knowledge, we can operate on 𝑋 
directly. Once the groups in 𝑋 have been defined, our 
data collaborator, SVCE, can then share the privacy-
sensitive data 𝑌, averaged for each group in 𝑋. 

We present two different approaches to accomplish 
the first step. The first is a constrained k-means 
algorithm, which is performs well in terms of information 
loss but is computationally very expensive. The second is 
a custom algorithm designed for our purpose that is far 
less expensive at a slight penalty in terms of information 
loss. We’ll call this custom algorithm k-unique-nn (k-
unique-nearest neighbors). 

2.4 Clustering 

Most regular clustering algorithms, such as k-means, are 
not well equipped for the first step since they can result 
in clusters of any size. Recent work has proposed a 
restricted k-means algorithm, which imposes a minimum 
group size [13]. To minimize the loss of information, we 
set the number of groups (𝑁$)  to the floor division 
between the number of rows in the data (𝑁) and the 
minimum number of rows per group (𝐾): 𝑁$ = ⌊𝑁/𝐾⌋.  
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We apply the restricted k-means algorithm to a min-
max normalized copy data such that the maximum value 
of every column is 1, and the minimum is 0. We use a 
Python/C++ implementation of the restricted k-means 
method [14]. 

The restricted k-means algorithm is computationally 
expensive. This is amplified in our case by the fact that 
we are looking to cluster data into many groups, with 
each group containing only a small number of items. This 
is different from most applications of clustering, where 
data is sought to be clustered into a smaller number of 
groups with more data points within each group. 

Here, we propose an alternative, substantially faster 
approach to cluster the data into evenly sized groups. We 
evaluate the loss of information of this faster approach 
against the restricted k-means algorithm as a 
benchmark. 

This algorithm, k-unique-nn, searches for k nearest 
neighbors of each data point, but in a way that each point 
is only assigned as a neighbor once. It is therefore related 
to, but different from unsupervised k-nearest neighbor 
clustering. To start, for each row 𝑖 , we calculate the 
square difference between the value in each column 𝑗 
and that column’s mean, summed across all 𝐾 columns: 

 

𝜎!% 	= 1 2𝑥&'(),!,# − 𝑋&'(),*44444444445%
#∈$

 

 
We also define Ξ  to be the set of rows not yet 

processed. Initially, Ξ = 1…𝑁  (all rows in 𝑋 ). The 
algorithm then works as follows: 
1. Pick row 𝑖 ∈ Ξ whose value 𝜎!% is largest among all 

rows in Ξ. 
2. Calculate the difference between row 𝑖 and all rows 

in Ξ, using the min-max normalized data, summed 
across all columns 𝑗: 
 

	∆!,,
% 	= 1 2𝑥&'(),!,# − 𝑥&'(),,,#5

%

#∈$
	∀	𝜉 ∈ Ξ 

 
3. Select the 𝐺  rows among Ξ  with the smallest 

difference ∆!,,
%  (one of them will row 𝑖 itself, since 

∆!,!% = 0) and assign them to a cluster. Then remove 
these rows from Ξ, and start with step 1. 

4. Once there are fewer than 2 × 𝐺  rows left in the 
dataset, all remaining rows are assigned to the last 
cluster. 

 

2.5 Homogenizing Clusters 

Once the clusters have been defined such that each 
cluster contains at least 15 rows, we iterate over each of 

those clusters and homogenize each column such that 
each column within each cluster contains only one 
unique value. As a result, each row in 𝑋 belonging to a 
given cluster will be identical. 

To do so, we set each value of each column 𝑗 in a 
given cluster 𝑞  with rows Θ-  (the set of rows that 
belong to cluster 𝑞) to the value that is closest to the 
average value of that column and cluster: 
 

𝑋.!,# 	= 	 𝑥/,# 			s. t.		 min/∈.!
IJ𝑥/,# − 𝑋.!,*444444J

%
K	∀	q 

 
We use the value closest to the average, rather than 

the average itself, to avoid the introduction of new 
values not present in the original data where this might 
not make sense. For example, for integer-like columns 
such the construction year, the desired outcome is a 
cluster value of 2015 or 2016, rather than 2015.5, even if 
the median is 2015.5. 

2.6 Variance-weighted clustering 

The clustering in both algorithms is based on normalized 
data, meaning that each row has similar variance. 
However, we might want certain features to be weighted 
more (i.e., we want certain features to modified less, or 
less often) than others. 

For example, our data contains four binary columns, 
indicating whether a building is a single-family 
residential, multi-family residential, commercial, or 
other property. Clustering buildings of different types 
together should be avoided. Similarly, features that we 
anticipate having a stronger effect in the analysis might 
need to be weighted more, such that the total amount of 
error introduced in the homogenization step is inversely 
proportional to the importance of each feature. 

To this end, we create a weighted version of the 
minmax-normalized data, where each column 𝑗  is 
multiplied by a weight 𝑤#. The default weight is 1.0. For 
the binary columns indicating building types, the weight 
is set to an arbitrarily large number (e.g., 100) to prevent 
different building types to be clustered together 
completely (in the restricted k-means approach) or in all 
but the final cluster (in our custom algorithm). 

2.7 Measuring Performance 

The goal is to keep the difference between the original 
set of predictors, 𝑋, and the modified data (where each 
cluster has been homogenized) to a minimum. To 
evaluate this difference, we calculate the average 
difference across all 𝑁 × 𝐾 values in the dataset. The 
change for each individual value, 𝑥!,#, is measured as the 
change in that value relative to the scale of the 
corresponding columns (the difference between the 
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minimum and the maximum value of that column in the 
original data): 
 

𝛿	[%] 	=
100
𝐽
	1

∑ 2𝑥!,#,012341 − 𝑥!,#,526145
%

!

∑ 2𝑥!,#,012341 − 𝑋*,01234144444444445
%

!#

 

 
A value of 𝛿 = 5.0%  therefore means that the 

variance of the difference between the values before and 
after the modifications is 5/100th of variance in the 
original data. A value of 𝛿 = 100% indicates complete 
loss of information (replacing the entire column with its 
mean value). A value of 𝛿 = 0% indicates no change 
(all values remained identical). 
 
3. RESULTS 

3.1 Performance comparison of the two approaches 

We find that our custom algorithm is about 1,000 times 
faster than the restricted k-means clustering approach 
(Table 1). This makes it feasible to be used on the full 
dataset with 170,592 rows.  

Table 1: Comparison of computational efficiency and 
information loss between the restricted k-means clustering 
method (r-km) and our custom algorithm (both for group size 
G=15). Performance is indicated for the full dataset 
(N=170,592) for the custom algorithm only, and for two 
random subsets (all algorithms). Computing time is based on 
Python/numpy implementations running on an Intel Core i5-
8279U. Weighted data is used. 

  N 

Metric Algorithm 5,000 20,000 170,592 

Computing 
time 

r-km 185s 1.2h ⁓200h 

k-unique-nn 0.3s 4.8s 376s 

Information 
loss (δ) 

r-km 14.0% 10.9% ? 

k-unique-nn 15.2% 11.7% 6.0% 

 

When applied to the full dataset, the custom algorithm 
causes an information loss of 6%, as defined in the 
previous section, to anonymize the data such that there 
are always at least 15 rows with matching properties 
(Table 1). This loss increases with decreasing size of the 
data. For those smaller sizes, for which we can run the 
restricted k-means clustering approach as a benchmark, 
we observe about a 10% increase in the loss of 
information incurred by our faster custom algorithm 
than the benchmark approach (11.7% vs 10.9%). As a 

result, our k-unique-km algorithm can feasibly be used in 
place of the more precise r-km algorithm with a modest 
penalty in information loss, but a substantial increase in 
computational efficiency. 

3.2 Weighting the data 

Using weighted data leads to an increase in total 
information loss, but a decrease the information loss of 
the columns that are weighted more highly (Figure 2). In 
our example, the information loss in building square 
footage is decreased from 10.4% to 1.37% because of 
weighting it more, while the data in other columns that 
remained at the default weight, such as year built, are 
subject to an increase in the loss of information. 
 

 
Figure 1: Comparison of information loss between unweighted 
and weighted data for all columns (“average”) as well as two 
individual columns, one of which is weighted higher and one of 
which is weighted lower. 
 

Introducing weights is not a zero-sum game: it increases 
the total amount of information loss across all columns 
(from 4.6% to 6.0% in this case). Yet, this may still lead to 
an increase in accuracy of the final model applied to the 
data if the weights are chosen properly (for example, 
proportionally to each feature’s effect size in a 
normalized linear regression model). To do so, prior 
knowledge about the importance of each column is 
required. This knowledge can be obtained from previous 
analyses, or by performing the data aggregation twice: a 
first time without weights for a preliminary analysis, and 
a second time with informed weights. 
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3.3 Modifying the group cluster size 

The loss of information increases super-linearly with the 
log of increasing cluster size (Figure 2). As a result, 
increasing the cluster size from the default of 15 to 50, 
for example, would increase the loss of information from 
6.0% to 10.3% (using the column weights). Therefore, a 
minimum cluster size higher than about 25 would not be 
recommended in this case. The log of the computational 
effort decreases linearly with the log of increasing cluster 
size, indicating a monomial relationship. 

 

 
Figure 2: Relationship between information loss (δ) and 
computation time and minimum cluster size (group size) G. The 
default is 𝐺 = 15. 

 

3.4 Addressing the maximum contribution clause 

As previously noted, this work focuses on the clustering 
aspect of our policy context, stating that data must be 
aggregated to groups of a specific minimum size. In our 
case, compliance with the second aspect—stating that 
no one individual customer’s load can exceed 15 percent 
of the group’s energy consumption—was not required by 
our collaborator due to additional data security 
measures that were put in place. 

If necessary, however, a simple extension could be 
made to accommodate this second part: first, we would 
raise the minimum cluster size (e.g. from 15 to 25), 
incurring an increase in loss of information from 6.0% to 
7.6% (see Figure 2). This makes it unlikely that an 
individual customer of any cluster contributes more than 
15% to the total energy consumption of that cluster 
(which has an average contribution of 4.0%), since the 
clustering is based on building features that jointly 
predict a relatively large share of the variance in annual 
energy consumption. Then, the few individual customers 
whose energy use does contribute more than 15% are 

dropped. Those customers can be considered outliers for 
energy modeling purposes (since their energy 
consumption is far higher than what we’d expect for the 
given cluster), reducing the drawback of having to drop 
some information from the data for many applications. If 
fewer than 15 customers remain after iteratively 
dropping customers whose contribution to the updated 
total is over 15%, the cluster exhibits an unusually high 
amount of variance in terms of energy consumption and 
is dropped from the data entirely. 

For more accurate compliance with the second part 
of the 15/15 rule, the algorithm could be modified to 
consider that part while defining the clusters. The main 
disadvantage of this approach, however, is that the 
algorithm, which now requires information on each 
customer’s energy consumption ( 𝑌 ) at the time of 
execution, will need to be executed by the data owners, 
rather than the research collaborators. 

DISCUSION 
 
In this work, we introduce an approach to modify data 
such that individual rows are not uniquely identifiable 
based on their features by clustering data and then 
homogenizing each cluster. This approach is tailored to 
compliance with the “15/15 rule,” but may apply to other 
situations where data needs to be anonymized to 
preserve privacy as well. 

We present two different approaches to produce the 
clustered data, one based the computationally expensive 
restricted k-means clustering method, and k-unique-nn, 
an algorithm developed for this work. The latter is 
several orders of magnitude faster while causing a 10% 
(relative) increase in information loss. The k-unique-nn 
algorithm scales O(n2) with increasing sample size n, 
which is inferior scaling behavior than the restricted 
clustering method. However, at dataset sizes so large 
that the restricted k-means clustering algorithm would 
catch up with the k-unique-nn algorithm in terms of 
speed, it should usually be feasible to split the dataset 
into chunks and process each chunk separately with a 
minimal decrease in information loss. 

In our case, energy consumption data is aggregated 
across each cluster by the data owner once the clusters 
have been defined. Therefore, individual energy 
consumption profiles are going to be smoothened, and 
demand spikes caused by individual customers will be 
less salient in the final data. This is an inherent problem 
to aggregating energy data by averaging or summing it 
over a given group or cluster. The extent to which this is 
an issue will depend on the intended use of the 
aggregated data. 
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In the context of data privacy, differential privacy has 

been receiving an increasing amount of attention [5], [8]. 
It allows to publicly share information about a dataset by 
describing characteristics of groups within that dataset 
while withholding information about individuals. As a 
result, an adversary with auxiliary information is unable 
to infer whether one particular person or entity is part of 
the corresponding group. 

This goal is somewhat different to our case. First, in 
our case, the protected information is the energy 
consumption; other building properties (such as square 
footage, age, type, etc.), and their combination, are 
assumed to be public knowledge. Second, our goal was 
not to prevent anyone from ascertaining that a particular 
customer is part of a given group, but rather to protect 
that customer’s energy consumption profile. 

Nonetheless, there are differential privacy 
approaches to one-time publishing of non-overlapping 
counts of data, such as sharing energy consumption 
profiles along with contextual data [9], [15]. The general 
idea is similar to our approach: first, the data is grouped; 
second, aggregate information is released for each of 
those groups. The difference is that both steps would be 
carried out in line with differential privacy principles, 
rather than the 15/15 rule.  

An implementation based on differential privacy 
could ascertain a quantifiable amount of privacy 
protection of individual customers in a way that the 
15/15 rule cannot. It could also alleviate some of the 
drawbacks of the 15/15 rule, especially if geographical 
information (such as the zipcode location) is to be 
preserved [4]. The results presented here can serve as a 
reference, both in terms of loss of information as well as 
in terms of computational effort required, for possible 
future implementations based on differential privacy. 

Even once policies based on differential privacy are 
in place, however, a potential challenge is the burden of 
implementation: Our collaboration with a relatively small 
entity was made possible by the fact that most of the 
effort to design the anonymization strategy (defining the 
clusters) could be carried out by us, using data that can 
be assumed to be public information. A potentially costly 
involvement of a third-party curator was not necessary. 

In conclusion, our work can help accelerate energy 
data sharing to enable urban energy modeling and 
inform decarbonization pathways. It is particularly 
suitable where policies correspond to the 15/15 rule or 
similar principles, providing a straight-forward and 
computationally inexpensive approach. It can also serve 
as a baseline for different specific implementations, 
including those relying on differential privacy. 
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