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ABSTRACT 
 As a growing need for reducing carbon emissions, the 
renewable energy-based electric vehicle (EV) system has 
been studied. Extensive research has investigated the 
optimal sites for EV charging stations (EVCS) powered by 
photovoltaic (PV) plants. However, feasible ranges of 
applying EVCS powered by PV can be varied by different 
land use. This paper presents the effective approaches 
for siting and sizing EV charging stations using the geo-
spatial clustering method on Geographic Information 
System (GIS). This study explores the optimization of site 
selection for charging stations depending on parcel maps 
and conducts an economy and environment analysis 
through the evaluation of potential electricity which can 
be generated in the study area.   

Keywords: Electric Vehicle, Fast charging stations, 
Rooftop PV, Vehicle-to-building (V2B), Vehicle-to-Grid 
(V2G), Building category  

NONMENCLATURE 

Abbreviations 
V2B Vehicle to Building 
PV Photovoltaic 
V2G Vehicle to Grid 
EV Electric Vehicle  
GHG Greenhouse Gases 
CO2 Carbon Dioxide 
ICE Internal Combustion Engine 
EVCS Electric Vehicle Charging Station 
GIS Geographic Information System 
MCDA Multi-Criteria Decision Analysis 
MINLP Mixed-Integer Non-Linear 
NAD North American Datum 
UTM Universal Transverse Mercator 
IN Indiana state 
USA United States 
DSM Digital Surface Map 
USGS U.S. Geological Survey 
TIN Triangular Irregular Network 

LASer LAS 

EPA 
U.S. Environmental Protection 
Agency 

SO2 Sulfur Dioxide 
NOx Nitric oxide and nitrogen dioxide 
Symbols 

n Year  
DC Direct Current 
Min Minutes 
V Volt 
VA Volt-ampere 
N North 
D Dimensional 
ft Foot 
W Watt 
m Meter 
h Hour 
mi Miles 
¢ Cent 
$ Dollar 
lb pound 

1. INTRODUCTION
Electric vehicle (EV) adoption has increased over the

last 10 years, from a 0.2% share of vehicle sales in 2012 
to an 8.3% EV market share in 2021 [1] in the global 
vehicle market. In that EVs do not emit air pollution when 
driving, they have been promoted for improving air 
quality in cities [2]. However, potential EV customers are 
still hesitating to adopt EVs. According to a survey 
conducted by consumer report, lack of public charging 
station is rooted as the biggest hesitation (48%) for 
potential EV users, followed by two disadvantages: 
purchase price (43%), and insufficient driving ranges 
(42%) [3]. Insufficient charging stations not only reduce 
the purchasing power of EVs but also cause a risk in 
which the vehicle stops while long-distance driving due 
to the inability to charge the vehicle. 
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On the other hand, EVs have been considered one of 
the promising technologies to reduce carbon dioxide 
(CO2) emissions that can cause environmental issues 
such as rising global temperatures and greenhouse gases 
(GHG). Specifically, annual emissions per vehicle by 
electric vehicles are around 30% less than gasoline-based 
internal combustion engines (ICEs). However, the CO2 
emissions of electric vehicles highly depend on sources 
of electricity, such as coal, and natural gas. For example, 
national averages for electricity sources are made up of 
natural gas of 38%; coal of 22%; nuclear of 19%; and 
renewables of 20% in the United States. In the state of 
Indiana, sources of electricity are composed of coal of 
59%, natural gas of 30%, and renewables of up to 10%. 
Accordingly, annual emissions per electric vehicle in 
Indiana are two times higher than EVs that use the 
national average energy sources. It indicates that EV uses 
may not have significant impacts on carbon emissions in 
terms of well-to-wheel emissions, which include all 
emissions from the process of energy production to use.  

Although extensive study of placing and sizing 
electric vehicle charging stations (EVCS) has been 
conducted to facilitate the supply of growing demand for 
EVs, it is still challenging that it still uses electricity 
produced from carbon-intensive energy sources (e.g., 
coals) with high CO2 emissions. Thus, recent studies have 
designed the optimal EVCS model connecting EVCS with 
electricity produced from PV plants. For example, Hafez 
and Bhattacharya 2017 [4] proposed the optimal design 
of EVCS by considering physical, operating, and 
economic characteristics. They designed the EVCS under 
two different supply options: (a) isolated EVCS that 
directly connect to PV, and (b) grid-connected EVCS from 
a microgrid perspective with considering Feed-in-Tariff 
(FIT) to evaluate the electricity prices that paid to 
renewables-based energy suppliers. Shariff et al., 2020 
[5] suggested the optimization design of a solar-powered 
EVCS in off-grid. Accordingly, the design of EVCS 
connected with PV plants is necessary for the site and 
size of EVCS and PV plants. In addition, feasible ranges of 
applying EVCS powered by PV can be varied by different 
land use [6]. To fill the gaps in the literature, this study 
proposes an approach for optimally selecting sites and 
sizing for EVCS connected with PV installed in the rooftop 
of buildings on a GIS environment under the microgrid 
concepts. The primary goals are to analyze the economic 
and environmental impacts of the installation of fast-
charging stations by different land uses and to evaluate 
the capacity of EVs in the charging stations. 

2. RESEARCH BACKGROUND  
The investigation of optimal seating for the EVCS is 

key to expanding the spread of it for potential EV users. 

Researchers have studied site selection for EVCS using a 
decision-making model or deep neural network model 
with a geographic information system (GIS). For 
example, Erbas et al., 2018 [7] proposed GIS-based fuzzy 
multi-criteria decision analysis (MCDA) to find the 
optimal sites of EVCS under environmental, economic, 
and urbanity perspectives. They found influential sub-
criteria under main perspectives (e.g., EV ownership in 
the service area of 0.197 and distance to power cut of 
0.128 under economic criteria, distance to the 
vegetation of 0.109 under environmental criteria, and 
service area population of 0.109 under urbanity criteria) 
for searching the areas to install the EVCS and comparing 
potential charging stations with current stations. Micari 
et al., 2017 [8] suggested a graph model-based planning 
of EVCS by calculating both the number and position of 
EVCS in a road network. They considered the EV flow and 
the charging station technical characteristics under 
different scenarios devised through changing the 
parameters (e.g., the autonomy of the vehicle, the safety 
margin, charging station power, and average energy of 
the battery pack).  

In addition, researchers have studied the site 
selection of EVCS with sizing the charging station 
together to project the charging station investment 
planning as a public charging station in urban or 
metropolitan cites environment. Although the level 1 
and level 2 charging stations are generally installed in 
residential (at home) or commercial (at 
workplace/parking lot) areas due to relatively low 
installation cost (~ several hundred dollars), they require 
to take a few hours (~4.5 hours) to fuel EVs. On the other 
hand, level 3 or DC-fast (called superchargers in Tesla) 
has strong advantages in that it relatively takes 30 min to 
charge EVs (filling 80% gauges). However, they are 
required to additionally install electronic equipment 
such as transformers for converting voltages (single 240V 
to three-phase 480V line and high current and power 
rating by transformer: 600 to 800 kVA), and permit from 
states. The fast-charging infrastructure costs up to 
$60,000 [9]. Sadeghi-Barzani et al., 2014 [10] present a 
Mixed-Integer Non-Linear (MINLP) optimization 
approach for optimal site selection and sizing of the fast-
charging station. They computed the total cost of 
charging station development including station 
development cost (e.g., station equipment cost and land 
cost) and station electrification (e.g., grid loss, EV loss), 
and applied its computation to the study area to find 
optimal sites where the total cost is minimized 
considering policy scenarios.  
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3. METHODOLOGY  
This research explores optimal sites for installation of 

EVCS-powered PV power generation installed in rooftops 
of building at a case study in West Lafayette, IN, USA. This 
study also evaluated the sizing of EVCS that satisfied the 
optimal characteristics: the high supply of PV power 
generation and demand of traffic flow by geo-spatial 
analysis using GIS modified by a methodology presented 
in [11].  

3.1 Data collection 

This study uses two spatial data types (e.g., traffic 
count, and PV power output). All data used for sitting and 
sizing the EVCS were digitalized using a uniform 
coordinate system (i.e., North American Datum (NAD) 
1983 Universal Transverse Mercator (UTM) 16N) and the 

same resolution (i.e., 10  10 ft2). West Lafayette in 
Indiana, United States, was chosen as the case-study 
area (Fig. 1). The case study area consists of various 
parcels (e.g., residential, commercial, 
industrial/agricultural, and state/government-owned), 
and thus a spatial analysis is required for identifying 
installation sites for EVCS in each parcel region. 

For representing the demand for electricity by EV 
users, traffic count data was collected from continuous 
numerical maps (e.g., polyline layers) at a fixed interval 
of 10 ft provided by the Indiana Department of 
Transportation (INDOT) [12]. These traffic count data 
define the average daily traffic values for the year and 
calculate the volumes of traffic passing both directions of 
the road. The traffic count data were transformed from 
continuous polyline layer format to discrete point layer 
to process the spatial autocorrelation analysis. 

The PV power outputs are obtained by estimating 
the daily available solar irradiation at a raster level using 
the area solar radiation method in ArcGIS and the global 
formula for estimation of the electricity generated in the 
output of a photovoltaic system. The solar radiation 
analysis in ArcGIS enables to calculate the insolation 

across an entire map, which can consider the effects of 
geographical effects (i.e., shadow effect, sky view effect) 
on solar irradiation, using only geographic data (i.e., 
digital surface map, DSM) [13]. DSM, a representation of 
the bare ground topographic surface of the Earth 
including surface objects (e.g., trees, buildings) as three-
dimensional (3D) elevations, was computed using a lidar 
point cloud map provided by U.S. Geological Survey 
(USGS) [14]. The DSM map can be generated through two 
steps as shown in Fig. 2): (a) create the triangular 
irregular networks (TIN) terrain map from point cloud-
based elevation data in LASer (LAS) format, and (b) 
convert the TIN map into raster images. Creating a TIN is 
for interpolating the elevation values in an empty space 
by forming a network of triangles. Then, the TIN map was 
transformed into a raster image (i.e., DSM) using data 
conversion functions in geoprocessing tools on GIS. 
Finally, the DSM map was used to estimate yearly solar 
radiation and was extracted through a building footprint 
map for obtaining only the values located overlaying the 
building map that indicates generating the PV power 
output from solar PV plants installed on the rooftop of 
the buildings. 

 
Fig. 1 The parcel maps in case study area: West 

Lafayette, Indiana state in United States. 

  
Fig 2. The process of creation of DSM map for solar irradiation generation: (1) Conversion of point cloud into TIN, and 

(2) Conversion of TIN into DSM. 



  4 

Furthermore, based on the solar irradiation map 
(Wh), this paper generated the daily electricity 
generation from rooftop PV (Wh/day) using the Equation 
1 based on [15]; where A denotes total solar panel area 
(m2), r denotes solar panel yield or efficiency (%) (the 
solar panel yield of a PV module of 200 Wp with an area 
of 1.1 m2 is 18.1%) in Equation 2, H denotes annual 
average solar radiation on tilted panels, and PR denotes 
performance ratio, the coefficient for losses (i.e., the 
default value is 0.75 for the performance of installation 
independently of the orientation, inclination of the 
panel). Table 1 shows the daily PV power output at the 
test site represented in different parcels.   

𝐸 (𝑘𝑊ℎ) =
𝐴 × 𝑟 × 𝐻 × 𝑃𝑅

365
 (1) 

𝑟 =
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 𝑜𝑛𝑒 𝑠𝑜𝑙𝑎𝑟 𝑝𝑎𝑛𝑒𝑙

𝑡ℎ𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑜𝑛𝑒 𝑝𝑎𝑛𝑒𝑙
 (2) 

3.2 Modeling spatial weights 

For suitability analysis, a spatial autocorrelation is 
used as the computational model that is about social or 
physical processes to find or cluster the similar/dissimilar 
to nearby sites. While the Moran`s I measure how a site 
is apposite to its neighborhood, the Getis-Ord Gi 
statistics describe “how large the neighborhood of a 
given site is relative to the average neighborhood” in 
(Oxoli 2019, page 3) [16]. This analysis is used to perform 
evidence of spatial patterns that can be presented by the 
ratio of peripheral observations at site i to the sum of all 
observations, including those not at site i, Equation 3 
based on [17]. However, the xj values are not ruled in 
standardized distribution, and thus it is needed to 
transform the raw Gi statistics to be centered on zero-as-
normal distribution, the Equation 4 based on [18], for 
interpreting around site I of neighboring sites j within 
distance d (i.e., wij).  
 

𝐺 =
∑ 𝑊𝑖𝑗𝑋𝑗

𝑁
𝑖

∑ 𝑋𝑗
𝑁
𝑖

 (3) 

𝑍𝑖 =
𝐺𝑖 − 𝐸[𝐺𝑖]

√𝑉𝑎𝑟(𝐺𝑖)
 (4) 

𝐸(𝐺𝑖) =
∑ 𝑊𝑖𝑗

𝑁
𝑖

𝑛(𝑛 − 1)
 (5) 

The G statistic can be interpreted through clustering 
high/low values in/around the target spot. The G index 
can discern cluster structures of high- or low-value 
concentration (e.g., traffic count, PV power output) 
among local observations. Overall, this study used a 
Getis-Ord Gi statistics-based hotspot analysis to evaluate 
spatial clusters of traffic count and PV power output in 
West Lafayette city using an ArcGIS environment. The 
high values in the attribute are extracted in the statistical 
analysis and apply these results to search for the best 
sites for installation of EVCS where both attributes satisfy 
the high values (i.e., high-high values).           

3.3 Evaluation of economic and environmental impacts 

There were over 20 EVs for sale in the United States 
in 2021, automakers were launching these cars with 
varied car specifications. In other words, it makes a 
difference between taking the time to charge EVs, and 
adding electricity for driving miles. This study determines 
one brand, TESLA Model 3 Saloon Long Range All-Wheel 
Drive (AWD) 4dr Auto, for uniformly evaluating the 
economy for EVs charged. This model has a relatively 
well specification of 358 miles range (environmental 
protection agency, EPA), and a 78 kWh battery size. The 
specification of fleets (i.e., charger power output) is used 
to calculate the charging time. Installing the charger 
power output depends on the parcel region. For 
example, the level 2 chargers (7kW) are installed in 
residential regions; two different level 3 chargers (50kW, 
and 150kW) are installed in industrial/agricultural, 
state/government, and commercial regions. Overall, to 
estimate the time it will take to charge an EV, the size of 
battery capacity in kilowatt-hours divided by the 
charging power times under assuming that “EVs charge 
up to 80% of battery capacity” and “the efficiency of the 
charger is 100%” as shown in Equation (6). 

𝑐ℎ𝑎𝑟𝑔𝑒 𝑡𝑖𝑚𝑒 (ℎ)

=
𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑐ℎ𝑎𝑟𝑔𝑒 𝑝𝑜𝑤𝑒𝑟 ×  𝑝𝑜𝑤𝑒𝑟 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
 

(6) 

Table 1. The results of predicted daily potential electricity. 

 
Solar irradiation 

(Wh.y) 
Rooftop area 

(ft2) 
Efficiency (%) 

Yearly Energy 
(Wh.y) 

Daily Energy (kWh.d) 

Residential 1.246  1010  1.022  106 18.1 1.691  1011 4.634  105 

Commercial 7.553  109 6.320  105 18.1 1.025  1011 2.809  105 

Industrial 5.431  108 4.445  104 18.1 7.373  109 2.020  104 

State owned 8.267  109 7.132  105 18.1 1.122  1011 3.075  105 
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For example, as shown in Table 2, in a residential 
parcel, it takes 8.9 h to charge, which took longer than 
other parcels using relatively high charger power (e.g., 50 
kW, 150 kW) and the cost of electricity to charge 288 
miles for driven was calculated at $6.82 applying 
electricity rates in IN (10.53 ¢/kWh) without the 
definition of a progressive tax. In commercial and 
industrial parcels, the charging time and charging cost 
were calculated under different level 3 charge power 
(e.g., 50 kW and 150 kW) that it took 25 min at a 150 kW 
and 1.2 h at a 50 kW charger, respectively. Specifically, 
electricity costs for state/government-owned parcels 
were calculated by applying industrial electricity rates. 
 

In addition, to calculate the available number of EVs 
charged in each fleet, this study assumed that all EVs are 
charged when their battery levels are between 0% and 
80%; they leave the stations after completing the 
charging.   

This study estimates CO2 emissions reduction by 
changing the electricity resources from generated by 
general methods (e.g., thermal power stations) to 
generated by renewable sources (e.g., solar PV plants) 

during driving the EVs. The avoided CO2 emissions can be 
calculated through the greenhouse gas equivalencies 
calculator presented by the United States Environmental 
Protection Agency (EPA) [19].  

4. RESULT  

4.1 Spatial weight evaluation 

Table 3 provides the information on the spatial 
relationships among the spatial features (e.g., traffic 
count, PV power output) using P-value and Z-score. It 
further provides analysis according to different parcel 
regions (e.g., commercial, industrial/agricultural, 
state/government-owned sites) except for residential 
regions where one charger is installed to one house 
without the need to charge EVs quickly. As a result, the 
P-values were less than 0.05 in both cluster analysis of 
traffic count and PV power output with two parcel 
regions: commercial and state-owned regions. The null 
hypothesis can be rejected; and the spatial patterns are 
clustered in specific spots (i.e., not random processes). In 
addition, the spatial distribution of high values can be 
clustered when the observed general G index is greater 

Table 3. The spatial relationships among the spatial features. 

Parcel 
regions 

Analysis type 
Observed 
General G 

Expected  
General G 

Z score P value Pattern 

State owned 

PV power 
output 

0.00181 0.00180 2.255 0.024 High-Clusters 

Traffic count 0.00109 0.000067 35.434 < 0.01 High-Clusters 

Commercial 

PV power 
output 

0.01295 0.01294 2.809 0.005 High-Clusters 

Traffic count 0.00074 0.00044 56.568 < 0.01 High-Clusters 

Industrial 

PV power 
output 

0.03570 0.03570 -0.251 0.802 Random 

Traffic count 0.02660 0.20000 6.199 < 0.01 High-Clusters 

Entire region 

PV power 
output 

0.00167 0.00167 8.85 < 0.01 High-Clusters 

Traffic count 0.000241 0.000152 77.711 < 0.01 High-Clusters 

 

Table 2. The specification of EVs in different fleet characteristics. 

 
Residential  

(7kW) 
Commercial 

(150kW) 
Commercial 

(50kW) 
Industrial 
(150kW) 

Industrial  
(50kW) 

Charging time 8.9 h 25 min 1.2 h 25 min 1.2 h 

kWh added 62 kWh 62 kWh 62 kWh 62 kWh 62 kWh 

Range added 288 miles 288 miles 288 miles 288 miles 288 miles 

Electricity rates 10.53 ¢/kWh 9.14 ¢/kWh 9.14 ¢/kWh 6.34 ¢/kWh 6.34 ¢/kWh 

Charging cost $ 6.82 $ 5.75 $ 5.75 $ 3.95 $ 3.95 

Cost per mile 2.368 p 1.997 p 1.997 p 1.372 p 1.372 p 
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than the expected general G index with a positive Z-score 
in all parcels. In this respect, we exclude industrial 
parcels from the analysis.  

4.2 Site selection of EVCS 

The potential sites of EVCS with high or low values 
were determined in the local spatial autocorrelation 
analysis using High/Low clustering (Getis-Ori General G), 
and Cluster and Outlier Analysis (Anselin Local Moran`s 
I). Fig. 3 illustrates the overall clusters of solar power 
output produced in rooftop PV as a supply aspect and of 
traffic count as a demand aspect. 

In particular, clustering analysis is shown by 
classifying five classes from a high-high cluster (i.e., a 
high value of PV power output or heavy traffic flow 
clustered) as pink color to a low-low cluster (i.e., a low 
value clustered) as sky blue color with not significant 
clustered as gray color. This study determines optimal 
sites under two strategies: (a) where both PV power 
output and traffic count are very high, which are sites 1, 
2, 3, and 4 in Fig. 3a, and (b) traffic flow is very high 
compared to other regions, as shown in site 5 in Fig. 3a. 
To be specific, at the fifth candidate site, PV power 
output was relatively insufficient for providing electricity 
so that connecting with neighboring rooftop PV will be 
needed.  

The hotspot cluster map was further analyzed to 
determine the installation of EVCS at appropriate sites in 
different parcel regions. On the state-owned parcel, the 
new charging stations would be intensively installed at 
sites 1 and 2, as shown in Fig. 3b. It implies that a small 
number of charging stations should be planned for 

accommodating relatively many fleets in state-owned 
areas (Fig. 3b and Table 4).  

Furthermore, on the commercial parcel, the new 

charging stations would be installed where inter-city 
travel occurs (sites 2 and 4), the northern part of the city 
(site 2), and the university airport (site 3) in Fig. 3c. EVCS 
installation strategy for commercial parcels would be 
established that fleets are dispersed to many charging 
stations (Fig. 3c and Table 4).  

4.3 Sizing of charging station and counting of the 
capacity of EVs in EVCS 

Based on the prediction of daily potential electricity 
in section 2.1 and the assumption of EVs and fleets in 
section 2.3, we calculated the daily capacity of EVs and 
the installation of the number of fleets in each parcel 
(Table 4). In particular, to calculate the daily capacity of 
EVs, the EV battery capacity (80%, 62.4kWh) was divided 
into potentially productive electricity (daily energy in 
table). Based on the number of EVs, we calculated the 
available installation of the number of fleets that (a) the 
maximum acceptable EV per fleet (daily unit) was 
calculated by dividing 24 hours into charging time per 
single EV, and (b) the total number of fleets was 
calculated by dividing the total number of EVs into the 
maximum acceptable EV per fleet in two different 
charging speed (e.g., 50kW, 150kW). In residential 
parcels, the number of fleets or EVs was calculated as the 
number of houses where rooftop PV can be installed 
since the residential area installs one fleet per house. 
 

   

  

(a) (b) (c) 

   
Fig. 3 EVCS site selections: (a) Suitable sites for EVCS powered by rooftop PV; (b) EVCS in state-owned areas; and 

 (c) EVCS in commercial areas 
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Table 4. The capacity of EVs under potential electricity 
production by rooftop PV in the test area and the 

number of fleets for each parcel’s EVCS in different 
charging speeds (e.g., 50 kW, 150 kW) 

Parcels 
 

The number 
of EVs 

  

The number of fleets 

Charging speed 

50 kW 150 kW 

Residential 
4623  

(i.e., the number of houses) 
Commercial 4531 47 226 
Industrial 326 3 16 
State-owned 4960 51 247 

4.4 Reduction-effectiveness of CO2 emissions  

The evaluation of daily potential electricity from 
rooftop PV was analyzed to identify how much tailpipe 
emissions can be reduced by replacing the energy 
sources from coal-based production with solar energy for 
driving the EVs. In this study, four different parcel 
regions, residential, commercial, industrial, and state-
owned (Table 5), were compared in terms of three types 
of tailpipe emissions; CO2, SO2, and NO2. Overall, it 
showed the largest tailpipe reduction (CO2 of -19,820 
tons; SO2 of -14.645 tons; and NOx of 12.745 tons) in 
residential regions where the most electricity could be 
produced by rooftop PV. Tailpipe emissions can be 
decreased through the replacement of electrical energy 
sources, in addition to the tailpipe reduction effect while 
driving the EVs.     

Table 5. Reduction of environmental emissions by 
installing EVCS-powered by rooftop PV 

Parcels CO2 (tons) SO2 (lb) NOx (lb) 

Residential -19,820 -29,290 -25,490 
Commercial -13,820 -20,890 -18,290 
Industrial -860 -1,280 -1,110 
State owned -19,440 -16,920 -13,160 

5. DISCUSSION AND CONCLUSIONS 
This study suggests a geospatial analysis-based 

investigation of optimal sites for the installation of EVCS 
connecting with the rooftop PV. The optimal sites are 
determined through satisfying the conditions of both the 
PV power output and traffic flow. The result discovered 
that searching for optimal sites is heavily influenced by 
parcel areas (e.g., residential, commercial, industrial, 
state-owned). For example, in the entire region (Fig. 3a) 
and commercial region (Fig. 3c), we could find the 
optimal sites using clustering analysis where both two 
factors were high. On the other hand, in the state-owned 
area, it was relatively difficult to find an area that met 
both factors.  

In addition, the estimation of sizing the EVCS, 
proposed in previous studies, has focused on building the 
optimal design of EVCS when they connect with PV 
plants. On the other hand, we can devise a plan for 
determining how many fleets are installed in charging 
stations (Table 4). These results help to evaluate the 
project economy for the management of charging 
stations and to solve the problem of demand for charging 
stations due to the expansion of EV supply. Furthermore, 
this study may contribute to reducing carbon dioxide 
while driving EVs by replacing the electric energy sources 
from coal and natural gas with solar energy.  

However, the proposed approach cannot implement 
the scheduling of electricity charging to EVs and supply 
from PV plants at a fine temporal resolution (e.g., 
hourly), which can be used to evaluate energy flow for 
the management of EVCS accurately. Thus, future work 
has to expand the current approach by considering the 
scheduling of charging patterns and applying it to other 
areas that can present complex parcel areas to 
generalize our approach.           
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