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ABSTRACT 
The pipeline blockage increases the resistance of 

water distribution networks. In this study, a new method 
based on machine learning was proposed to locate the 
blocked pipeline. Numerous block scenarios were 
simulated by the hydraulic simulation, considering 
various block sizes and user demands for each pipeline. 
The dataset of the pressure change rates on the nodes 
was used to train artificial neural network models. The 
influences of the dataset variables on the model 
performance were analyzed. Results showed that the 
proposed method can successfully locate the blocked 
pipeline using the measurement of one day. 
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NONMENCLATURE 
Abbreviations 

WDNs Water Distribution Networks 
SVM Support Vector Machine 
kNN k-Nearest-Neighbor
ANN Artificial Neural Network

Symbols 
Cd Diameter Coefficient 

1 INTRODUCTION 
Water distribution networks (WDNs) are the 

infrastructures of cities and maintain the operation of 
the water supply. Clogging in the pipelines of WDNs may 
occur. The causes of blockages in the pipelines can be 
chemical corrosion, deposition of minerals, partial 
closure of valves, cold icing, etc. When the blockage 
exists in a pipeline, the high resistance of the pipeline 
increases the upstream pressure and the risk of water 
burst. And the downstream flow rate decreases, which 
may fail the demands of end users. Therefore, it is 
necessary to locate the block failure of WDNs. 

Blockage in the pipeline can be classified as discrete 
blockage and extended blockage depending on the 
length of the blocked portion relative to the pipeline [1]. 
The blockage affects the flow pattern of water and thus 
signal anomalies can be detected by sensors. To find the 
relationship between the abnormal signals and the 
blockage in the pipeline, the signal analysis method has 
been used to detect the blockage. The signals collected 
are in various forms, such as vibration signal, acoustic 
signal and pressure signal. Lile et al. [2] collected 
vibration signals by accelerometers and found that the 
vibration was stronger when the flow area was smaller. 
Yang et al. [3] proposed a signal noise reduction method 
based CEEMD-VT-SVD to improve the performance of 
analyzing acoustic signals to identify the blockage. Sattar 
et al. [4] used pressure sensors to collect the pressure 
signals at the end of the pipeline and analyzed the effect 
of the discrete blockage in the pipeline by using the 
frequency response method. Duan et al. [5] studied the 
effect of the extended blockage in the pipeline on the 
pressure signal using the frequency response method. 
Kim et al. [6] proposed a simplified formula to represent 
multiple discrete blockages in the pipeline. Lee et al. [7] 
used the frequency response diagram to detect single 
and multiple partial blockages in the pipeline. Massari et 
al. [8, 9] used the stochastic successive linear estimation 
method to establish the relationship between the 
pressure signal and the pipeline diameter to estimate 
the size and the location of the blockage.  

The signal analysis method shows its potential for 
detecting the blockage in the pipeline. However, for 
urban water supply networks, numerous pipelines are 
interconnected to form a complex network. The varying 
demands of end users unsteady the flow state in the 
network, which brings perturbations to the signal 
analysis method making analyzing difficult. Recently, the 
machine learning method has been received attention 
from researchers due to its powerful characterization 
capability. The machine learning method obtains data 
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from pressure and flow sensors in WDNs, and builds a 
machine learning model to identify the fault data which 
indicates the fault location in WDNs. At present, to the 
authors' knowledge, no research has been reported on 
the localization of pipeline blocks in WDNs with the 
machine learning method. As with blocks, leaks in WDNs 
affect the flow state, influencing the data measured 
from pressure and flow sensors. Hence, leak localization 
methods in WDNs should be reviewed. Mashford et al. 
[10] used support vector machine (SVM) to predict the
size of a single leak and another SVM to predict the leak
location with measured pressures from six points, and
97.7% of the predicted nodes were within 300 meters of
the real nodes. Wachla et al. [11] used SVM to build flow
prediction models for 23 zones dividing by a large WDN
and used ANFIS to determine whether a leak occurs for
each zone. Zhang et al. [12] divided a large WDN into
multiple subzones using the k-means method and used
SVM to predict which subzone the leak occurred in. The
performance of SVM model was lower when more
subzones were divided. This method narrows the leak
events into subzones, which is helpful for on-side leak
localization.

Further studies investigated the effects of 
uncertainties on the model performance of leak 
localization in WDNs. Soldevila et al. [13] used Bayesian 
classifier to predict the location of a single leak in the 
WDN. The comparison was conducted on the 
performances of Bayesian classifier, k-Nearest-Neighbor 
(kNN) classifier and the angle method in four cases of 
uncertainties: leak size, pressure measurement, user 
demand, and the combination of three above. The 
prediction performances of different time windows 
were also considered. Results showed that the 
uncertainty of user demand weakened the model 
performance and decreased the accuracy from about 
90% to more than 60%. The accuracy of Bayesian 
classifier returned to 90% when the time window 
increased from 1 to 24. Quinones et al. [14] compared 
the performances of four machine learning models: kNN 
classifier, Bayesian classifier, artificial neural network 
(ANN) and SVM. Five cases of uncertainties were 
considered: leak size, measurement precision, pipe 
roughness, estimated user demand, and the 
combination of four above. It was found that almost 
100% accuracies were achieved in the first three cases, 
while the uncertainty of user demand decreased the 
accuracies to more than 70%. The performances of 
models in the combination case were most weakened, 
and the accuracies dropped to about 60%. Moreover, 
the accuracies in the fifth case were improved by 
applying Bayes' rule in a time window. The accuracies of 
SVM and Bayesian classifier exceeded 90% when the 

time window was large enough. Lucin et al. [15] used a 
random forest model to predict leak locations. Three 
variables were randomly generated based on the Monk 
Carlo method: leak size, leak location, and user demand. 
The effect of data size was investigated. The prediction 
accuracy was improved as the data size increasing from 
100,000 to 500,000. The comparison was carried out on 
the effects of uncertainties: leak size, user demand, 
sensor placement, sensor quantity and data feature. 
When multiple nodes with the top probabilities were 
considered, the prediction coverage of the real leak 
point was significantly improved to almost 100%, i.e., 
one of these predicted nodes is a real leak point. 

In this study, a machine learning based method of 
block localization in WDNs is investigated. In a real 
network, the block data is insufficient to train machine 
learning model. Hence, numerous block scenarios were 
simulated by the hydraulic simulation considering three 
variables: user demand, block size and block location. 
The WDN model can be calibrated by the historical data 
from the real network. With a large range of simulation 
variables, the synthetic data was used to construct ANN 
models to predict the block locations. The influences of 
the variables were analyzed respectively.  

2 Materials and Methods 

2.1 Blockage Simulation 

The simulation of the blockage has no common 
manner. In real WDNs, the pressure sensors are installed 
at the end of pipelines. The pressure distributions along 
the pipelines are not available. A study using the CFD 
method by Yang et al. [16] shows that the smaller the 
diameter and the longer the length of the narrow part, 
the larger the pressure drop. Thus, in this paper, 
blockage is simulated by reducing the pipeline diameter. 
The diameter coefficient Cd is proposed as a multiplier to 
reduce the pipeline diameter. The range of the diameter 
coefficient from 0.50 to 0.95 in a step of 0.01 was chosen 
arbitrarily. The range from 0.96 to 0.99 was not included 
considering subtle deviation and sensor error. The 
smaller diameter coefficient can cause significant 
resistance, which can be located by user reported water 
shortage. Thus, the diameter coefficients smaller than 
0.50 were not considered. 

2.2 Water Distribution Network Case 

The case studied in this paper is the EPANET2 
example Net3 network [17], a medium-sized WDN with 
117 pipelines, 92 nodes, 3 tanks and 2 reservoirs (Fig. 1). 
The Net3 network case has 24 scenarios for every one 
hour in a day. Some simplifications were implemented 
to the network. The bypass pipelines of the pump 335 
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are canceled, and the lake source operates all day 
instead of opening in Hour 1-15. Thus, available nodes 
are 89 left, and pipelines are 115 left. Fundamental 
assumptions were considered that the hydraulic model 
is well calibrated, the blockage has been detected, and 
the blockage occurs in only one pipeline. The flow 
demands of end users can be satisfied and therefore 
fixed, and the pressure heads provided by water sources 
are also constant at fixed values.  

Fig. 1 The Net3 network layout 

All the pipelines were considered being potentially 
blocked. In order to obtain the data for training the 
machine learning model, the block scenarios were 
conducted on a series of diameter coefficients and 
varying user demands. The network was modeled and 
simulated in CAENAE [18] in a time step of one hour. In 
this study, the simulation results of each hour were 
considered individually to investigate the model 
adaptability to various operating conditions. User 
demands change considerably, so the pressure change 
rates of the block scenarios relative to the normal 
scenarios were used. It is assumed that the flows and the 
pressures on the nodes can be measured in real time. 
The flow rates at the moment were considered as the 
parameters of the normal scenarios. 

2.3 Artificial Neural Network 

ANN has been commonly used in supervised 
prediction. ANN containing one hidden layer can achieve 
approximation to any non-linear function [19]. ANN 
gives out the probabilities of the labels, the final 
prediction is determined by the label of the maximum 
probability. Thus, ANN with one hidden layer was chosen 
to predict the block location. Adam solver was used for 
weight optimization and ReLU for activation function. 
The data features were built by the change rates of 
pressures at all nodes. Because the prediction of the 
blocked pipeline is a multi-classification problem, the 

accuracy is used as an efficient criterion to judge the 
model performance. The accuracy can be calculated by 
the proportion of true predictions. In this study, the 
dataset was divided by the hour and the step of the 
diameter coefficient, e.g., a train set of Hour 20 and Step 
10 contains the data simulated with the user demands 
at 20 o'clock and the diameter coefficients of 0.50, 0.60, 
0.70, 0.80, 0.90. And the test set of Hour 20 contains the 
data simulated with the diameter coefficients excluding 
0.50, 0.60, 0.70, 0.80, 0.90. 

The parameters of the ANN model (hyper-
parameters) have a decisive influence on the prediction 
performance. Using the grid search method, the optimal 
hyper-parameters were determined with the dataset of 
Hour 0-5 and Step 10. With the constant learning rate 
and training epoch, the number of the hidden layer units 
and the L2 penalty were optimized for the ANN model. 
The hidden layer units of 80 and the L2 penalty of 0.6 
were obtained. In Chapter 3, the ANN models were 
trained with the same hyper-parameters. The ANN 
models were realized with the Python library Pytorch 
1.9.0 [20]. The flowchart of the proposed method is 
depicted in Fig. 2. 

Fig. 2 Flowchart 

3. RESULTS

3.1 User Demands Influence 

The influence of user demands was investigated via 
various train sets. The dataset was divided into four 
parts by every six hours. The train sets are the first three 
parts, including Hour 0-17 scenarios, and the test sets 
are the fourth part, including Hour 18-23 scenarios. The 
model A/B/C was trained with the train set of Hour 0-
5/0-11/0-17.  
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Model A achieved an overall accuracy of 72.9%, but 
only 55.9% for Hour 21 set. Model B showed an 
improvement, especially on Hour 21 set. The train set of 
model B included the scenarios similar to Hour 21 set 
and therefore the accuracy of Hour 21 set was improved 
significantly. Model C showed a slight improvement than 
model B, but the accuracies of Hour 22 set and Hour 23 
set decreased. Scenarios under different user demands 
may have an opposite effect on the pressures and 
therefore decreased the accuracy. 
 

Table 1. Influences of user demands. 

Test set 
Accuracy 

Model A Model B Model C 
Hour 18 71.9% 74.3% 78.7% 
Hour 19 76.3% 80.2% 81.0% 
Hour 20 73.2% 81.4% 81.6% 
Hour 21 55.9% 74.8% 77.1% 
Hour 22 83.8% 89.1% 88.4% 
Hour 23 76.1% 76.9% 76.0% 
Overall 72.9% 79.5% 80.5% 

 

3.2 Diameter Coefficient Influence 

To investigate the influence of the diameter 
coefficient, the dataset of Hour 0-5 was chosen and 
divided by the step of the diameter coefficient. The 
model D/E/F was trained with the train set of Step 
10/5/2. The test set was the rest part of Hour 0-5 set. As 
the step was shortened, the data size of the train set 
increased. 

Model D achieved an overall accuracy of 84.4% and 
model F reached the highest accuracy of 90.5%. With 
more training inputs, the model performance was 
improved. These models carried out the best results to 
the minimum diameter coefficient. As the diameter 
coefficient increased, the effect of the blockage became 
subtler and the accuracies decreased. Despite the 
maximum diameter coefficient, model F achieved an 
accuracy of 80.1%. 
 

Table 2. Influences of diameter coefficient. 

Test set 
Accuracy 

Model D Model E Model F 
0.50 < Cd < 0.60 91.6% 93.2% 94.5% 
0.60 < Cd < 0.70 90.1% 92.5% 94.6% 
0.70 < Cd < 0.80 86.5% 90.2% 92.9% 
0.80 < Cd < 0.90 80.1% 85.2% 88.6% 
0.90 < Cd ≤ 0.95 65.4% 76.2% 80.7% 

Overall 84.4% 88.7% 90.5% 
 

3.3 Block Location Influence 

The model G was trained with the dataset of Hour 0-
23 and the diameter coefficient of Step 5 to investigate 
the influence of the block location, achieving an accuracy 
of 86.6%. The accuracy for each pipeline was concluded 
in Table 3. For 65.2% of pipelines, the prediction results 
of model G were satisfactory, achieving an accuracy over 
90%. The proportion of the pipelines with an accuracy 
over 50% reached 92.2%. The last 10 pipelines were 
shown in Table 4. Pipeline 293 and 319 were the most 
difficult to identify, which may need additional concerns. 

 
Table 3. Proportions of the accuracies for each pipeline. 

Accuracy range Proportion 
≥ 50% 92.2% 
≥ 70% 82.6% 
≥ 80% 74.8% 
≥ 90% 65.2% 

 
Table 4. Accuracies of the last 10 pipelines. 

Pipeline Accuracy Pipeline Accuracy 
293 21.1% 211 45.3% 
319 26.9% 281 46.6% 
271 39.1% 135 47.3% 
40 42.1% 50 48.2% 

112 43.7% 323 50.4% 
 

3.4 Model Application 

The model H was trained with the dataset of all 
scenarios. Another test set considered 10% base 
demand variation was generated to test the model. The 
diameter coefficient of pipeline 271 was set to 0.80.  

 

 
Fig. 3 Top 2 pipelines of predictions 

 
Results of 24 times predictions showed that model H 

achieved an accuracy of 37.5% (decreased from 39.1%). 
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The second most predicted pipeline was 263 with a 
proportion of only 8.3% (Fig. 3). Hence, the final 
prediction can be determined by the majority voting. 
Although the accuracy was lower than 40%, model H was 
capable of locating the real blocked pipeline. 

4. DISCUSSION 
Based on the results obtained, it is evident that the 

proposed method can successfully locate a single 
blocked pipeline for a one-day operating scenario. 
Several models were constructed to compare the 
variables of the dataset. In conclusion, the more 
scenarios included in the train set, the better the 
performance of the model. However, with more 
scenarios, the computational cost gets higher, so a 
compromise should be considered between the model 
performance and the computational cost. 

In this paper, the momentary user demands were 
considered as individual operating scenarios, and thus 
the data can be collected for multiple times in one day, 
with the final result obtained by the majority voting. 
Numerous flow and pressure sensors are required for 
this purpose. The influences of the number and the 
placement of the sensors should be investigated in 
further study. As described in Section 3.1, the user 
demands have a great impact on the performance of the 
model. The solution can be that building multiple models 
for varying user demand patterns. 

There are still many open questions. Block detection 
in WDNs needs to be studied before block localization. 
The impact of different approaches to simulate blockage 
should be compared in further study, such as reducing 
the pipeline diameter and inserting a regulating valve in 
the pipeline, and the position of the valve may also affect 
the results. In the calibration of the hydraulic model, 
most pipelines may already be partially blocked, and 
thus the proposed method can only predict the further 
blocked pipelines on this basis. In this study, only a single 
blocked pipeline was considered. However, blockages 
caused by corrosion can occur in multiple pipelines at 
the same time, the prediction of multiple blocked 
pipelines should be studied in the future.  

5. CONCLUSIONS 
In this study, a machine learning based method was 

proposed to locate the blocked pipeline in the WDN. The 
dataset of the pressure change rates on the nodes was 
constructed by the hydraulic simulation, considering 
three variables: user demand, block size and block 
location. A series of machine learning models were built 
to investigate the influences of the dataset variables.  

Results showed that the models were generally 
improved with a larger train set. However, the 

improvements are limited, which is helpful for the 
computational cost. 113 out of 115 pipelines obtained 
an accuracy higher than 30%. The model application 
indicated that the real block location can be determined 
by the majority voting based on a one-day 
measurement. 
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