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ABSTRACT 
 Energy communities (ECs) are one of the key 
strategies of the European Union’s plan to increase 
adoption of renewable energy sources (RES). A better 
understanding of factors that facilitate the existence of 
energy cooperatives (ECoops), the most common 
organizational form of ECs, might contribute improving 
strategies to foster larger adoption of ECs. We perform 
an exploratory spatial data analysis to assess if RES 
availability and quality, quantified using four decades of 
ERA5 data, co-occur with the presence of ECoops across 
Europe. Results show a slight predominance of ECoops 
where wind resources are high and opposite results for 
solar resources. At the continental level, the spatial 
relation between ECoops and the proposed indicators is 
rather random but local clusters develop where RES’ 
availability is high. 

Keywords: renewable energy resources, energy 
cooperatives, ERA5, complementarity, resources 
droughts, exploratory spatial data analysis.   
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1. INTRODUCTION
Energy communities (ECs), as proposed by the recast

of the renewable energy directive (REDII) of the 
European Commission [1], are expected to play a key role 
in the energy transition. It is foreseen that ECs contribute 
to increase the adoption of renewable energy sources 
(RES) and foster the active participation of energy end-
consumers in the energy transition. 

ECs follow social and environmental purposes rather 
than economic ones. While there is evidence that for 
individuals there is very little economic advantage of 
implementing ECs compared to becoming a prosumer 
acting on its own (see e.g., [2]), ECs might motivate 
investments that otherwise would not be made, 
contributing to the creation of social capital, and leading 
to behavioral change beneficial for the energy transition 
[3]. This makes the creation and consolidation of ECs 
desirable and the understanding of how to foster them 
highly relevant. 

The most common legal form of ECs are energy 
cooperatives (ECoops) [4], which are already positively 
contributing to the European energy transition [5]. 
ECoops are generally understood as democratically 
controlled (social) enterprises jointly owned by voluntary 
members who follow the same economic, social, and/or 
environmental goals [6]. Research on ECoops has shown 
that they are a source of innovation and contribute to the 
decentralization of the energy supply system [7]. There 
is also consensus that ECoops contribute positively in 
environmental and social terms to the energy transition 
and therefore the study of the drivers for their 
emergence has become highly relevant [8].  

We argue that a better understanding of which 
factors facilitate the development of ECoops might help 
to foster a larger adoption of ECs. Studies dedicated to 
the drivers and conditions for the emergence of ECoops 
are usually based on qualitative research methods [3] 
and focused on single or small groups of European 
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countries. It was only recently that a first attempt for a 
European wide qualitative analysis of the relationship of 
ECoops with potential drivers was made [9]. That study 
uses an exploratory spatial data analysis to evaluate the 
co-existence of ECoops with over a hundred indicators 
from the social progress index and the quality-of-life 
index. The authors find that from all of the indicators 
“life-long learning” has the largest correlation and 
explanatory value and that at the local level some spatial 
clusters appear that relate the number of ECoops at the 
NUTS2 and NUTS3 regions level with the indexes [9]. 
Moreover, that study proposes as future work e.g., to 
replicate the methodology for the analysis of economic 
indicators and RES availability to have a full picture of 
factors that might contribute to the existence of ECoops. 

Here, we follow that lead and perform an 
exploratory spatial data analysis to gain a better 
understanding of which RES availability indicators co-
occur with the existence of ECoops. The analysis is 
performed for Europe at the NUTS2 and NUTS3 regions 
levels using the database on ECoops by the European 
federation of Renewable Energy Cooperatives (REScoop) 
[10]. The RES availability indicators are calculated using 
40 years of hourly ERA5 data [11] and include not only 
availability indicators such as yearly solar irradiation, 
average wind speeds, capacity factors for solar and wind 
power and their complementarity but also quality 
indicators such as resources droughts on daily and 
weekly scales. 

2. MATERIAL AND METHODS
In general, we follow the methodology proposed by

Lode et al. [9] to make an exploratory spatial data 
analysis that sheds light on the co-occurrence of selected 
indicators and ECoops at the NUTS2 and NUTS3 levels 
across Europe. In our case, the indicators are related to 
RES availability and quality. We consider a total of 38 
indicators, which calculation is motivated by the work of 
Brown et al. [12] and Jurasz et al. [13]. The former 
evaluated wind and solar power resource droughts for 
western North America at the weekly scale and the latter 
assessed wind and solar power complementarity and 
resources droughts for Poland at the daily scale. Both are 
recent studies that rely on ERA5 data as a source for RES 
estimations.   

2.1 Data 

Three data sets are necessary to conduct our study. 
These include the geographic location of the ECoops, 
wind and solar energy related variables of ERA5 and 
maps with the NUTS2 and NUTS3 regions to summarize 
and store the calculated indicators. We obtain the data 

on ECoops from the REScoop database [10]. These were 
publicly available data from which we extracted name, 
address and if provided the World Geodetic System 
(WGS84) coordinates of each registered ECoop. While 
this database is a non-exhaustive source for all ECoops in 
the continent, it provides the most extensive available 
overview of European ECoops currently known. These 
data are not only the source for [9] but also other studies 
such as [14] and [5]. This data set was cleaned and 
completed as proposed in [9]. 

The ERA5 data is retrieved from the Copernicus 
climate data store using the API and a python script for 
automatic retrieval. ERA5 is the fifth generation of global 
reanalysis of the European Centre for Medium-Range 
Weather Forecasts (ECMWF). It includes hourly 
estimates of hundreds of atmospheric, ocean-wave and 
land surface variables from 1950 onwards in a spatial 
resolution of 0.25 degrees. We use data from the entry 
including data from 1979 and our data set covers the 
period January 1979 to December 2021 as well as the 
area in the bounding box 71.3, 34.66, 31.91 and -11.38 
for the north, south, east, and west coordinates 
respectively. The variables used for the analysis are the 
temperature at two meters height (t2m) in grad kelvin, 
the horizontal speed of air moving towards the east and 
towards north, at a height of 100 meters above the 
surface of the Earth, (u100 and v100) in meters per 
second, and the surface solar radiation downwards (ssrd) 
in Joule per square meter, which is equivalent to the sum 
of direct and diffuse solar radiation. 

The maps with the NUTS2 and NUTS3 regions are 
retrieved from EUROSTAT [15] in the version of 2016 to 
match the data in [9]. The regions kept for the analysis 
are the ones inside of the bounding box used for the 
ERA5 data i.e., overseas regions of European countries 
and e.g., Iceland are not included in the analysis.  

2.2 Indicators 

We calculate 38 indicators to quantify RES 
availability and quality. These are divided in three sets 
that are presented in tables 1.-3. We conduct a spatial 
clip of the ERA5 data for each one of the regions in the 
NUTS2 and NUTS3 data using the python libraries xarray 
[16], geopandas [17] and rioxarray [18]. Posteriorly, we 
calculate each indicator per region and store them back 
in the NUTS2 and NUTS3 maps respectively. The first set 
includes indicators related to RES considered individually 
(Table 1.). We calculate mean wind speed averages and 
average yearly cumulated global horizontal radiation as 
well as capacity factors for solar photovoltaic (PV) and 
wind power. These capacity factors are calculated as free 
of assumptions on technology as possible, to keep the 



generality of the results. This follows the line of 
arguments of [12,13], and we use the calculations 
proposed by Bett and Thornton [19]. 

Table 1. Indicators of RES availability (individual RES) 

Indicator Explanation 

ws_avg 

Mean wind speed for the entire time series 
in m/s averaged from all pixels in a NUTS 
region 

ghi_avg 

Mean of the yearly cumulated global 
horizontal irradiance in kWh/m2 averaged 
from all pixels in a NUTS region 

pv_cf_avg 

Mean capacity factor of solar PV for the 
entire time series averaged from all pixels in 
a NUTS region 

wp_cf_avg 

Mean capacity factor of wind power for the 
entire time series averaged from all pixels in 
a NUTS region 

The second set of indicators corresponds to 
indicators of complementarity between the PV and wind 
power capacity factors (Table 2.). Complementarity is 
calculated using the spearman coefficient of correlation 
following the work of Jurasz et al. [13]. We include 
complementarity at the hourly, daily, weekly, and 
monthly temporal scales and perform the calculation for 
the entire time series. Moreover, on the spatial 
dimension we compute indicators on a pixel-by-pixel 
basis as well as values aggregated for each entire NUTS 
region (comparable to a cooper-plate assumption). 

Table 2. Indicators of RES availability (complementarity of 
RES) 

Indicator Explanation 

complement_ 
h_PP_avg 

Average from all pixels in a 
NUTS region of the average 
hourly RES complementarity 
calculated per pixel 

complement_ 
h_PP_high 

Highest value from all pixels in 
a NUTS region of the average 
hourly RES complementarity 
for the entire time series 
calculated per pixel 

complement_ 
h_PP_low 

Lowest Value from all pixels in 
a NUTS region of the average 
hourly RES complementarity 
for the entire time series 
calculated per pixel 

complement_ 
d_PP_avg 

Average from all pixels in a 
NUTS region of the average 
daily RES complementarity for 
the entire time series 
calculated per pixel 

complement_ 
d_PP_high 

Highest value from all pixels in 
a NUTS region of the average 
daily RES complementarity for 
the entire time series 
calculated per pixel 

complement_ 
d_PP_low 

Lowest Value from all pixels in 
a NUTS region of the average 
daily RES complementarity for 
the entire time series 
calculated per pixel 

complement_ 
w_PP_avg 

Average from all pixels in a 
NUTS region of the average 
weekly RES complementarity 
for the entire time series 
calculated per pixel 

complement_ 
w_PP_high 

Highest value from all pixels in 
a NUTS region of the average 
weekly RES complementarity 
for the entire time series 
calculated per pixel 

complement_ 
w_PP_low 

Lowest Value from all pixels in 
a NUTS region of the average 
weekly RES complementarity 
for the entire time series 
calculated per pixel 

complement_ 
m_PP_avg 

Average from all pixels in a 
NUTS region of the average 
monthly RES complementarity 
for the entire time series 
calculated per pixel 

complement_ 
m_PP_high 

Highest value from all pixels in 
a NUTS region of the average 
monthly RES complementarity 
for the entire time series 
calculated per pixel 

complement_ 
m_PP_low 

Lowest Value from all pixels in 
a NUTS region of the average 
monthly RES complementarity 
for the entire time series 
calculated per pixel 

complement_ 
avg_h 

Average hourly RES 
complementarity for the 
entire NUTS region and the 
entire time series  

complement_ 
avg_d 

Average daily RES 
complementarity for the 
entire NUTS region and the 
entire time series  

complement_ 
avg_w 

Average weekly RES 
complementarity for the 
entire NUTS region and the 
entire time series  

complement_ 
avg_m 

Average monthly RES 
complementarity for the 
entire NUTS region and the 
entire time series  



The third set of indicators comprises multiple 
alternatives to quantify RES droughts (Table 3). The 
calculation of the droughts is also motivated by Brown et 
al. [12] and Jurasz et al. [13] and therefore we provide 
indicators at the daily and weekly scale for the capacity 
factors of PV and wind power individually as well as 
assuming a combination of both in equal proportions. 
We assume that a day with a drought is a day when the 
average capacity factor from all hours of that day belongs 
to the lowest 1% of all days in the entire time series. 
Furthermore, a week with a drought is a week where the 
cumulated number of days with a drought belongs to the 
highest 1% of the entire time series. Values are 
calculated on a pixel-by-pixel basis and are then 
aggregate as mean, minimum and maximum for each 
NUTS region. 

Table 3. Indicators of RES quality (RES droughts) 

Indicator Explanation 

wp_dro_d_per_ 
w_mean_PP 

Mean from all pixels in the NUTS 
region of the average number of 
days per week with a wind power 
drought 

wp_dro_d_per_ 
w_min_PP 

Minimum from all pixels in the NUTS 
region of the average number of 
days per week with a Wind Power 
drought  

wp_dro_d_per_ 
w_max_PP 

Maximum from all pixels in the NUTS 
region of the average number of 
days per week with a Wind Power 
drought 

pv_dro_d_per_ 
w_mean_PP 

Mean from all pixels in the NUTS 
region of the average number of 
days per week with a PV power 
drought 

pv_dro_d_per_ 
w_min_PP 

Minimum from all pixels in the NUTS 
region of the average number of 
days per week with a PV power 
drought 

pv_dro_d_per_ 
w_max_PP 

Maximum from all pixels in the NUTS 
region of the average number of 
days per week with a PV Power 
drought 

wp_dro_weeks_ 
mean_pp 

Mean from all pixels in the NUTS 
region of the number of weeks with 
the highest 1% of days with a wind 
power drought  

wp_dro_weeks_ 
min_pp 

Minimum from all pixels in the NUTS 
region of the number of weeks with 
the highest 1% of days with a wind 
power drought  

wp_dro_weeks_ 
max_pp 

Maximum from all pixels in the NUTS 
region of the number of weeks with 
the highest 1% of days with a wind 
power drought  

pv_dro_weeks_ 
mean_pp 

Mean from all pixels in the NUTS 
region of the number of weeks with 
the highest 1% of days with a PV 
power drought  

pv_dro_weeks_ 
min_pp 

Minimum from all pixels in the NUTS 
region of the number of weeks with 
the highest 1% of days with a PV 
power drought  

pv_dro_weeks_ 
max_pp 

Maximum from all pixels in the NUTS 
region of the number of weeks with 
the highest 1% of days with a PV 
power drought  

comp_dro_d_per_ 
w_mean_PP 

Mean from all pixels in the NUTS 
region of the average number of 
days per week with a drought of 
combined wind and PV power 

comp_dro_d_per_ 
w_min_PP 

Minimum from all pixels in the NUTS 
region of the average number of 
days per week with a drought of 
combined wind and PV power 

comp_dro_d_per_ 
w_max_PP 

Maximum from all pixels in the NUTS 
region of the average number of 
days per week with a drought of 
combined wind and PV power 

comp_dro_weeks_ 
mean_pp 

Mean from all pixels in the NUTS 
region of the number of weeks with 
the highest 1% of days with a 
drought of combined wind and PV 
power  

comp_dro_weeks_ 
min_pp 

Minimum from all pixels in the NUTS 
region of the number of weeks with 
the highest 1% of days with a 
drought of combined wind and PV 
power  

comp_dro_weeks_ 
max_pp 

Maximum from all pixels in the NUTS 
region of the number of weeks with 
the highest 1% of days with a 
drought of combined wind and PV 
power  

2.3 Exploratory spatial data analysis 

We follow three out of the four steps for the 
exploratory data analysis proposed in [9] and adapt them 
to the particularities of our data sets: (1) By conducting a 
spatial join between the ECoops map and the maps with 
RES availability and quality indicators, we assign to each 
ECoop the indicators of the NUTS where the ECoop is 
located. We calculate descriptive statistics for each 
indicator associated to the ECoops and compare them to 
the distribution of the entire set of NUTS (NUTS2 and 
NUTS3). We create box plots and calculate mean, 
standard deviation, quartiles and run a t-test for each 
indicator. With this, we aim to understand how the 
indicators associated to each ECoop perform in 
comparison to the statistics of all NUTS regions. In 



   

addition, we want to evaluate if there is a significant 
difference between them. (2) We cumulate the number 
of ECoops per NUTS2 and NUTS3 region respectively and 
calculate the correlation of these numbers to each one 
of the indicators of RES availability and quality. (3) We 
calculate Local Indicators for Spatial Association (LISA) 
using bivariate Local Moran statistics between the 
number of ECoops and the indicators with the highest 
positive and negative correlations from the previous 
step. We analyze if clusters of High-High (HH), High-Low 
(HL), Low-High (LH), Low-Low (LL) of ECoop numbers and 
the indicators in the neighbouring NUTS exist. The results 
are visualized with LISA cluster and choropleth maps. The 
analysis is conducted using Python libraries such as 
numpy [20], geopandas [17], pandas [21], scipy [22], 
statsmodel [23] and PySAL [24]. 

 
3. RESULTS AND DISCUSSION 

3.1 Results of the descriptive statistics 

The comparison between the statistics for the 
individual ECoops and all NUTS regions shows diverse 
results. Differently to the results in [9], where all 
indicators of individual ECoops were performing 
significantly better than the indicators for all NUTS 
regions, in our case only two thirds of the indicators have 
means significantly different between the individual 
ECoops and the NUTS regions. Moreover, this difference 
is not always better for the individuals ECoops. For 
instance, indicators related to solar energy (ghi_avg, 
pv_cf_avg) perform in average significantly worse for the 
individual ECoops. An excerpt of results for the 
assessment of the NUTS2 regions is presented in Table 4, 
but the results hold also for the NUTS3 regions.  

Table 4. Summary statistics and p-value of the difference 
between the mean of each indicator for individual ECoops 
and all NUTS2 regions.  Selected results - only for indicators 
where the difference is significant. The first row of each 
indicator presents the statistics for individual ECoops and the 
second line for all NUTS2 regions.   

indicator mean Stddev t-test p-value 

ws_avg  
6.56 1.68 9.93 3.41E-22 
5.41 1.60     

ghi_avg 
  

942.46 82.19 -11.64 2.28E-29 
1011.62 91.43     

pv_cf_avg 
  

0.19 0.02 -11.57 4.46E-29 
0.20 0.02     

wp_cf_avg 
  

0.26 0.09 9.78 1.37E-21 
0.19 0.10     

complement_ 
h_PP_avg 

-0.08 0.06 2.37 0.018 
-0.09 0.06     

complement_ 
h_PP_high 

-0.12 0.05 2.20 0.028 
-0.13 0.06     

complement_ 
h_PP_low 

-0.01 0.06 2.87 0.004 
-0.03 0.07     

complement_ 
d_PP_high 

-0.30 0.06 -7.79 1.71E-14 
-0.27 0.07     

complement_ 
d_PP_low 

-0.07 0.13 4.68 3.25E-06 
-0.11 0.11     

complement_ 
w_PP_high 

-0.45 0.08 -6.33 3.76E-10 
-0.41 0.12     

complement_ 
w_PP_low 

-0.11 0.23 5.09 4.31E-07 
-0.19 0.19     

complement_ 
m_PP_high 

-0.64 0.11 -6.46 1.71E-10 
-0.58 0.17     

complement_ 
m_PP_low 

-0.15 0.37 5.39 8.93E-08 
-0.28 0.28     

complement_ 
avg_h 

-0.11 0.06 2.20 0.0277 
-0.12 0.07     

complement_ 
avg_m 

-0.54 0.15 -2.91 0.0037 
-0.51 0.20     

wp_dro_d_per_ 
w_mean_PP 

0.36 0.92 -2.37 0.0182 
0.51 0.87     

wp_dro_d_per_ 
w_max_PP 

0.64 1.40 -5.07 4.73E-07 
1.16 1.60     

wp_dro_weeks_ 
mean_pp 

122.00 64.50 3.70 0.0002 
105.86 57.66     

pv_dro_weeks_ 
mean_pp 

70.84 31.68 -4.08 4.80E-05 
80.54 38.73     

pv_dro_weeks_ 
min_pp 

28.50 23.65 -2.85 0.004 
33.81 32.51     

comp_dro_ 
weeks_mean_pp 

57.99 24.93 -2.75 0.006 
63.50 35.70     

comp_dro_ 
weeks_min_pp 

23.71 6.19 -5.14 3.33E-07 
28.82 24.02     

3.2 Results of the correlation analysis 

The correlation between individual indicators and 
the number of ECoops per NUTS regions is generally low. 
Table 5 shows the highest six positive and negative 
correlations for the NUTS2 regions and none of them 
reaches a value higher than +/- 0.254. The correlations 
for the NUTS3 regions are even lower in all cases and 
therefore not presented here. Furthermore, the results 
in Table 5 are in line with the results of the descriptive 
statistics; there is a positive correlation between ECoops 
and wind resources and a negative one with solar 
resources. These results must be interpreted with 



   

caution because of the known limitations of the ECoops 
dataset of REScoop (the database is non-exhaustive and 
therefore countries well connected with the REScoop 
network are more likely to be represented in the data 
set) but the data show indications that ECoops develop 
more in areas with better wind resources availability.  

Table 5. Correlation between individual indicators and the 
number of ECoops for NUTS2 regions. Selected results – only 
the indicators with the highest six positive and negative 
correlations. 

Indicators Correlation coefficient 
ws_avg 0.242 
wp_cf_avg 0.221 
complement_m_PP_low 0.153 
complement_d_PP_high -0.165 
pv_cf_avg -0.254 
ghi_avg -0.255 

3.3 Results of the LISAs analysis 

The LISA analysis is performed for the indicators 
ws_avg and ghi_avg since these are the ones with the 
highest positive and negative correlation coefficients 
respectively. Fig 1 presents the LISA analysis for ghi_avg 
in the NUTS2 regions. It shows that while at the 
continental level the number of ECoops has a negative 
correlation to the availability of solar resources, at the 

local level there are multiple HH clusters i.e., NUTS 
regions with high number of ECoops with neighboring 
NUTS regions with high solar resources availability. These 
results also hold for the NUTS3 regions. 

In the case of wind resources availability (see Fig 2.) 
HH clusters are spread in the coastal areas of Ireland, UK, 
France, the Netherlands, Denmark, and Sweden, where 
wind speeds are among the highest in the continent. Fig 
2 serves as an example for the results for the NUTS3 
regions that also hold for the NUTS2 regions. We argue 
that this relation between ECoops and wind power can 
be explained by the need of large capitals to invest in 
wind power. Compared to wind turbines, investments in 
private PV systems can be affordable to individuals. 
However, private investments are not captured by the 
ECoops dataset and further data would be needed to 
strengthen this statement.  

It is also important to note that a belt of NUTS 
regions without registered ECoops exist across the entire 
continent where resources availability is rather close to 
the average. This provides stronger signs of co-
occurrence of ECoops and RES availability than in the 
statistical and correlation analysis for the entire 
continent. However, these results also must be seen as 
exploratory since the same analysis using a more 
complete ECoops dataset might lead to a different 
clustering. 

 
Fig. 1 Bivariate Local Moran statistics of ECoops and ghi_avg for the NUTS2 regions. Left map: clustering by HH, HL, LH 

and LL. Right map: choropleth map of ghi_avg in kWh/m2/a. 
 

 



   

 
Fig. 2 Bivariate Local Moran statistics of ECoops and ws_average for the NUTS3 regions. Left map: clustering by HH, HL, 

LH and LL. Right map: choropleth map of ws_avg in m/s. 
 

4. CONCLUSIONS  

By performing an exploratory spatial data analysis of 
ECoops associated to RES availability and quality, this 
study provides further insights about indicators that co-
occur with ECoops and can be propitious for their 
emergence in Europe. The statistical and correlation 
analysis show that, at the full continental extent, there is 
evidence of a moderate relation between the existence 
of ECoops and RES availability indicators such as average 
wind speed, yearly global horizontal irradiance and 
capacity factors for solar PV and wind power. This 
relation is positive for the wind power availability 
indicators (higher indicator values for individual ECoops 
than for all NUTS regions and positive correlation 
between number of ECoops and the indicators) and 
negative for the solar power availability indicators (lower 
indicator values for individual ECoops than for all NUTS 
regions and negative correlation between number of 
ECoops and the indicators). Moreover, Local Moran 
statics show that larger number of ECoops exist where 
RES availability is high (specially for locations with high 
wind speeds) and that there are large areas of the 
continent with average availability of resources where no 
ECoops at all are reported. The latter is an argument to 
put emphasis in fostering the creation of enabling 
mechanisms for the establishment of ECs in such areas 
to counteract increasing spatial inequalities through the 
uneven distribution of ECs. Moreover, to fully benefit 
from complementarity, ECoops should receive regional 
support to follow key activities that are in line with the 
local resource availability. To counteract negative 
impacts, such as regional disparities and energy 

poverty, distributional measures should address areas 
with lower resource availability. Further research should 
focus on the creation of an exhaustive ECoops/ECs data 
set that allows to increase the robustness of the analysis.  
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