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ABSTRACT 
 In the modern energy sector, energy flexibility is 
highly essential. Participation in demand response 
programs is open to different power customers, with the 
greatest potential for some high-consumption industrial 
firms. This paper proposes a novel optimization model to 
maximize the profit obtained by marketing energy 
flexibility in a generic manner which is applicable for 
different industries. Two particular strengths of this 
model are its inclusion of dependencies between loads 
and load aggregation. We investigate the model’s 
performance in two use cases: one with dependent loads 
and another with aggregated loads. Results demonstrate 
that the proposed model can achieve its objectives in 
different use cases, giving exceptional usage for 
industrial flexibility cases.  
Keywords: industrial flexibility optimization, aggregated 
loads flexibility, generic flexibility data format 

NONMENCLATURE 

1. INTRODUCTION
The rising electrification of the industrial sector

impacts the electricity grid [1]. A common issue is grid 
congestion, which is solvable via network and 
infrastructure expansion. We can also mitigate 
congestion and other challenges by using energy 
flexibility on the demand side and active consumer 
engagement in balancing and wholesale markets [2]. 
Industries utilize a substantial quantity of energy in 
general and electricity in particular [3]. As a result, the 
industrial sector offers enormous potential for capturing 
existing energy flexibility and using it to solve such issues. 
Industries who desire to offer their energy flexibility face 
obstacles due to the complexity of energy markets. The 
difficulty results from the variety of options and 
substantial price fluctuation in markets. These hinder the 
evaluation of revenue potentials and the decision to 
invest in energy flexibility. Decision making tools are 
significantly important for tackling this issue [4].  

Indices and Sets 
𝐹 Set for Load 
𝑀𝑓 Set for measures of load f  

𝑇 Set for time 
𝑓 Index for loads 
𝑚 Index for measures 
𝑡 Index for time 

𝐷𝑠𝑡𝑎𝑟𝑡−𝑠𝑡𝑎𝑟𝑡−𝑎𝑓𝑡𝑒𝑟/ 

𝐷𝑠𝑡𝑎𝑟𝑡−𝑠𝑡𝑎𝑟𝑡−𝑏𝑒𝑓𝑜𝑟𝑒  

Set for dependencies that one 
load should start after/before 
the start of another one 

𝐷𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑜𝑛_𝑎𝑓𝑡𝑒𝑟/ 

𝐷𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑜𝑛_𝑏𝑒𝑓𝑜𝑟𝑒 

Set for dependencies that one 
load should not start 
after/before the start of 
another one 

Parameters 
𝑒𝑓,𝑚,𝑖 Power for measure m of load f 

at step i 

|𝑒𝑓,𝑚| Time length of measure m of 
load f 

𝐷𝑇𝑓  Regeneration time of load f 

𝑝𝑡 Electricity price at time t 
𝑐𝑓 Load activation constant cost 

𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝑓,𝑡 Times that load f can start 

𝑈𝑠𝑎𝑔𝑒𝑓,𝑚𝑖𝑛 Minimum permissible number 
of usages for load f 

𝑈𝑠𝑎𝑔𝑒𝑓,𝑚𝑎𝑥 Maximum permissible number 
of usages for load f 

Variables 
𝑥𝑓,𝑡 Load activation binary variable 

equal two 1 if load f is activated 
at t and 0 otherwise 

𝑦𝑓,𝑚,𝑡 Measure activation binary 
variable equal two 1 if measure 
m of load f is activated at t and 
0 otherwise 

Abbreviations 
EFDM Energy Flexibility Data Model 

inf Infinity 
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This study proposes a novel optimization model that 
determines when and in what quantity industry can offer 
flexibility in electricity markets and maximize profit. The 
decision-making process for energy flexibility marketing 
can employ the optimization model. For the description 
of energy flexibilities and associated parameters, the 
optimization model employs a generic data model [5].  

Compared to other optimization models in this 
domain, our model is novel in its allowance for 
dependencies between flexible loads. In many industries, 
there is a link between different machines which creates 
dependency between the operation of machines. Prior 
research, for example [6] and [7], often do not consider 
machine dependencies. Others, such as [8] and [9], use 
the material flow of an industrial process (e.g. in 
chemical plants) to create dependencies. However, this 
approach limits the model’s generalizability. The 
proposed model in this paper directly takes machine 
dependencies into account and creates a generic model. 

A second contribution of this model is the use of 
complex aggregated loads for flexibility. There are many 
opportunities for aggregators with industrial loads to 
combine different loads into complex aggregated loads 
and optimize flexibility [10]. The novel mathematical 
formulation here can optimize flexibility for both 
aggregated and non-aggregated loads. 

 
2. OPTIMISATION MODEL 

2.1 Inputs and Outputs 

The optimization model requires two inputs. The first 
input is the electricity market price. The second input is 
information about the industrial company's prospective 
energy flexibility. We used the energy flexibility data 
model (EFDM) [5] to describe the energy flexibility. The 
EFDM defines three classes to describe energy flexibility 
potential: flexible loads, storages, and dependencies.  

Following this data model’s specification allows for a 
more generic modeling of energy flexibility. As indicated 
in Fig. 1, we consider flexible loads and dependencies as 
possible inputs of the EFDM in this paper. 

The output of the optimization model consists also of 
two parts. The first output indicates the calculated 
schedule and the flexible load measures with their 
parameters, such as power deviation amount or 
activation time. The second output is the potential profit 
from offering and selling the energy flexibility based on 
the results of the optimization model and the calculated 
schedule. 

Industrial companies can describe their flexibilities 
based on the EFDM [5]. The EFDM uses key figures 
(represented in Table 1) to describe key characteristics of 
loads. Moreover, it can describe the relationships 

between different loads using the dependency concept, 
which demonstrates the necessity of activation (or 
deactivation) of one load after (before) another load.  

To use the inputs from the EFDM for the 
optimization model, we transform the inputs such that 
they can be used in the model.  Key figures such as 
validity, usage number, and holding duration can be 
imported directly from the EFDM for the optimization. 
One of the important concepts in the optimization model 
is the measure. The measure describes specific 
characteristics that one load can have based on the key 
figures of the EFDM for that specific load. The next 

 

Fig. 1 - Inputs and outputs of the optimization model 
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Table 1 - Key figures of the EFDM used for optimization 

Key figures  Description 

Power state Load deviations from normal 
operation point  

Holding 
duration 

The length of the operation for 
load per usage 

Usage number The total permissible number of 
usages for each load during 
optimization period 

Validity The interval that using flexible 
load is allowed for energy 
flexibility purposes 

Activation 
gradient 

The rate power changes during 
activation 

Deactivation 
gradient 

The rate power changes during 
deactivation 

Regeneration 
duration 

The time length that a load should 
not be activated after its 
deactivation 

Costs The cost of using flexible load, 
excluding the costs of electricity 
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example clarifies how to transform information in the 
EFDM for one load in a format that the optimization 
model can use. 

Based on the information in Table 2, there are two 
options for L1 to participate in the market. L1 can be 
activated, and then remains active for 2 hours (measure 
1) or 3 hours (measure 2), and then be deactivated as 
presented in Table 3. 

2.2 Mathematical Model 

The objective function of this paper is to maximize 
the profit gained by offering energy flexibility to the 
market:  

𝑚𝑎𝑥∑ ∑ ∑𝑦𝑓,𝑚,𝑡
𝑡∈𝑇𝑚∈𝑀𝑓𝑓∈𝐹

(

 −𝑐𝑓 + ∑ 𝑒𝑓,𝑚,𝑖 ∗ 𝑝𝑡+𝑖−1

|𝑒𝑓,𝑚|

𝑖=1
)

 . 

 

 

(1) 

In the objective function, the binary variable 𝑦𝑓,𝑚,𝑡 

indicates if the optimization activates measure m of load 
f at time t. If so, we multiply this binary variable by the 
net profit gained by market participation. Equation (2) 
restricts the number of activations of each load. Equation 
(3) relates the activation time of each measure and each 
load. Each load can have several measures. Regarding 
equation (3), the optimization allows the activation of at 
most one measure of each load at each time. To restrict 
the periods that we can use each load for energy 
flexibility, we have proposed equation (4). Therefore, 
these equations are 
𝑈𝑠𝑎𝑔𝑒𝑓,𝑚𝑖𝑛 ≤ ∑ 𝑥𝑓,𝑡𝑡∈𝑇 ≤  𝑈𝑠𝑎𝑔𝑒𝑓,𝑚𝑎𝑥   ∀  𝑓 ∈ 𝐹 ,                                                 (2) 

𝑥𝑓,𝑡 = ∑ 𝑦𝑓,𝑚,𝑡𝑚∈𝑀𝑓
          ∀  𝑓 ∈ 𝐹 , ∀  𝑡 ∈ 𝑇  , 

and                                                     

(3) 

𝑥𝑓,𝑡  ≤ 𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝑓,𝑡              ∀  𝑓 ∈ 𝐹 , 𝑡 ∈ 𝑇.                                      (4) 

After activation of each measure, the optimization 
forces the deactivation of the flexible load before the 
end of optimization period (T) considering regeneration 

time (𝐷𝑇𝑓) and the length of that measure (|𝑒𝑓,𝑚|): 

𝑦𝑓,𝑚,𝑡  ×  (𝑡 + |𝑒𝑓,𝑚| + 𝐷𝑇𝑓 − 1  ) ≤ 𝑇         ∀  𝑓

∈ 𝐹 , ∀  𝑚 ∈ 𝑀𝑓 , ∀  𝑡 ∈ 𝑇 .  

(5) 

After its deactivation and during the regeneration 
time, the optimization does not allow the activation of 
flexible load. Therefore, after the activation of one 
measure ( 𝑦𝑓,𝑚,𝑡 ) of flexible load f, the optimization 

cannot activate that flexible load again until |𝑒𝑓,𝑚| time 

steps and regeneration time 𝐷𝑇𝑓  have passed. As 

presented in equation (6), if measure m of load f 
activates at t, load f cannot start until this measure is 
deactivated after |𝑒𝑓,𝑚|  time steps and regeneration 

time (𝐷𝑇𝑓) of load f has passed: 

∑ 𝑥𝑓,𝑡+ℎ−1
|𝑒𝑓,𝑚|+𝐷𝑇𝑓
ℎ=2 ≤ (1 − 𝑦𝑓,𝑚,𝑡) × (|𝑒𝑓,𝑚| +

𝐷𝑇𝑓 − 1)      ∀  𝑓 ∈ 𝐹 , ∀  𝑚 ∈ 𝑀𝑓 , ∀  𝑡 ∈ 𝑇.        

(6) 

We consider dependencies between different loads 
using 4 equations. First, the activation of one load may 
force the activation of another load; we formulate this 
dependency in equations (7) and (8). Equation (7) 
describes that load j should start a to b time steps after 
the activation of load i. If load 𝑓𝑖 is activated at t, 𝑥𝑓𝑖,𝑡 

will be equal to 1. Therefore, 𝑥𝑓𝑗,𝑡 must be equal to 1 

from a to b time steps after t. The same approach can 
describe equation (8), where the activation of load i 
necessitates the activation of load j in the previous time 
steps. These equations are  
𝑥𝑓𝑖,𝑡  ≤ ∑ 𝑥𝑓𝑗,𝑡+ℎ

𝑏
ℎ=𝑎        ∀ 𝑓𝑖  𝑎𝑛𝑑 𝑓𝑗 ∈

𝐷𝑠𝑡𝑎𝑟𝑡−𝑠𝑡𝑎𝑟𝑡−𝑎𝑓𝑡𝑒𝑟    (𝑖 ≠ 𝑗), 𝑡 ∈ 𝑇 

and  

(7) 

𝑥𝑓𝑖,𝑡  ≤  ∑ 𝑥𝑓𝑗,𝑡−ℎ
𝑏
ℎ=𝑎       ∀ 𝑓𝑖  𝑎𝑛𝑑 𝑓𝑗 ∈

𝐷𝑠𝑡𝑎𝑟𝑡−𝑠𝑡𝑎𝑟𝑡−𝑏𝑒𝑓𝑜𝑟𝑒    (𝑖 ≠ 𝑗), 𝑡 ∈ 𝑇 . 

(8) 

Second, we formulate the exclusion of one load due 
to the activation of another load in equations (9) and 
(10). These equations formulate the exclusion of load i 
from a to b steps after or before the activation of load j , 
respectively. Here, if load 𝑓𝑖 is activated at t, 𝑥𝑓𝑖,𝑡 will 

be equal to 1, and all 𝑥𝑓𝑗,𝑡 must be zero from a to b time 

steps after t. Likewise, equation (10) excludes one load 
before the activation of another. Thus, these equations 
are  
∑ 𝑥𝑓𝑗,𝑡+ℎ
𝑏
ℎ=𝑎  ≤ (1 − 𝑥𝑓𝑖,𝑡) × (𝑏 − 𝑎 +

1)   ∀ 𝑓𝑖 𝑎𝑛𝑑 𝑓𝑗 ∈ 𝐷𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑜𝑛_𝑎𝑓𝑡𝑒𝑟   (𝑖 ≠ 𝑗), 𝑡 ∈ 𝑇 

and 

(9) 

 ∑ 𝑥𝑓𝑗,𝑡−ℎ
𝑏
ℎ=𝑎  ≤ (1 −  𝑥𝑓𝑖,𝑡) × (𝑏 − 𝑎 +

1) ∀ 𝑓𝑖  𝑎𝑛𝑑 𝑓𝑗 ∈ 𝐷𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑜𝑛_𝑏𝑒𝑓𝑜𝑟𝑒   (𝑖 ≠ 𝑗), 𝑡 ∈ 𝑇 . 

 
 
 

(10) 

Table 2 - Example for one load 

Load Power 
state 

Holding 
duration 

Activation 
gradient 

Deactivation 
gradient  

L1 1 MW [2,3] 
hours 

inf inf 

 

Table 3 - Possible measures of flexible load L1 
prepared for optimization model 

Measures of 
L1 

|𝑒𝑓,𝑚| 𝑒𝑓,𝑚,𝑖 

Measure1 2 𝑒1,1,1 = 1, 𝑒1,1,2 = 1 

Measure2 3 𝑒1,2,1 = 1 , 𝑒1,2,2 = 1 , 

𝑒1,2,3 = 1 
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3. CASE STUDY AND RESULTS 

We demonstrate the capabilities of the proposed 
model in two cases. In the first case, we consider several 
flexible loads and dependencies. In the second case, we 
use aggregated loads and assess the model’s ability to 
optimally schedule them. For all cases, we use synthetic 
data of flexible loads as input. For electricity prices, we 
use EPEX Day-ahead auction results from the market 
region Germany-Luxembourg.  

The first case uses data from 1 day (07/10/2020) and 
the second case uses data from 1 week (05/10/2020 – 
11/10/2020) [11]. We used Gurobi solver [11] with a Intel 
i7-9750H processor and 32 GB RAM for the simulations 
using the Python programming language. The simulation 
time was less than one second for all cases. 

3.1 Case I 

In Case I, we consider four different flexible loads 
with different characteristics such as holding duration, 
power state, activation/deactivation gradient, number of 
usages, validity period, and activation cost (Table 4). The 
load deviation type indicates if the flexible load will 
decrease (load decrease type) or increase (load increase 
type) during the energy flexibility provision. Moreover, 
the loads have dependencies between each other as 
presented in Table 5.  

   Fig. 2 illustrates the results of Case I. The first flexible 
load L1 decreases its power consumption between 
17:00-22:00. Although this period is not the highest price 
period, it gets activated because the model considers the 
validity restriction of L1 which prevents its activation 
between 8:00-13:00 during the highest price period. 
Moreover, the optimization selects the 3-hours period as 
holding duration for L1 to obtain the highest possible 
profit. The second flexible load of the decrease type 
reduces its power consumption three times, as per its 

maximum usage number. The optimization does not use 
L2 during the period between 10:00-12:00. Rather, the 
optimization selects 11:00-13:00 for activating L2 to 
satisfy a 1-hour regeneration period of L2. Due to the 
dependency between L1 and L3, the optimization 
activates L3 three hours after the activation of L1 to 
satisfy the dependency between them.  

L3 uses another activation during the peak price hours to 
gain more profit. Furthermore, the optimization 
activates L4 of load type increase twice although 

 

Fig. 2 - Results of Case I 

 

 

Table 4 - Characteristics of flexible loads considered in 
Cases I 

Key Figure Units L1 L2 L3 L4 

Load deviation 
type 

- 

d
ecrease

 

d
ecrease

 

d
ecrease

 

in
crease

 

Power state MW [3,3] [2,2] [1.7, 

1.7] 

[1,1] 

Activation 
gradient 

MW/
h 

3 inf inf inf 

Deactivation- 
gradient 

MW/
h 

3 inf inf inf 

Validity 
restriction 

time 1-12 - - - 

Activation cost Euro 0 0 0 0 

Holding 
duration 

h [1,3] [1,2] [2,3] [1,3] 

Regeneration 
time 

h 0 1 2 0 

Usage Number - [0,1] [0,3] [0,2] [0,2] 

 

Table 5 - Dependencies between loads in Case I 

Trigger 
load 

Dependent 
load 

Dependency type 

L1 L3 L3 must start 3 hours after 
the activation of L1 

L3 L4 L4 must start 1 to 2 hours 
after the activation of L3 
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increasing power reduces the profit while the electricity 
price is positive. The existing dependency between L3 
and L4 necessitates the activation of L4 1-2 hours after 
L3. Thus, the optimization requires the consideration of 
high-price periods for L3 and low-price periods of L4. 
Thus, L4 is active 2 hours after L3 to match low-price 
periods. 

 

3.2 Case II 

 In this case, we evaluate the functionality of our 
model for aggregated loads. We assume here that L1 and 
L2 result from the aggregation of other flexible loads, and 
both are the load decrease type. The proposed model 
can use these aggregated loads for energy flexibility 
optimization purposes. L1 and L2 are aggregated 
flexibilities used as inputs to the model, as depicted in 
Fig. 3. The minimum usage number of both flexible loads 
is 0. The maximum usage number of the flexible loads L1 
and L2 are 6 and 10, respectively.  

 Fig. 4 illustrates the results of Case II. The activation 
of both aggregated loads L1 and L2 are  coinciding with 
the high price hours, in order to maximize the profit 
gained. In each activation of L1, aggregated load L1 
decreases by 1 MW. After one hour, it decreases by 2.5 
MW and remains unchanged for 1 hour. Then it 
decreases by 2 MW for an hour and deactivates 
afterwards. The same logic explains the power changes 
for L2 in each activation. The optimization activates L1 
and L2 respectively 10 and 6 times, which are the highest 
possible usage numbers for these aggregated loads.  

4. DISCUSSIONS 

We tested our model for two different cases to 
demonstrate the capabilities of the model in calculating 
a schedule for energy flexibilities. The proposed model 
had the intended performance. The evaluations 
indicated the ability of the model to capture the 
potential flexibilities for simple and complex EFDMs. The 
proposed model can consider different power states for 
loads, regeneration time, activation/deactivation 
gradients, various holding durations, and between-load 

dependencies for both aggregated and non-aggregated 
electrical loads, which is neglected in other models. 
Using aggregated loads can reduce the computational 
burden significantly, since the number of binary variables 
in the problem decreases when using aggregated loads.  

The concept of measure used here adds potential to 
this model. Since only one measure of each load is 
allowed for activation at each time, we can define 
various measures for aggregated loads, and the 
optimization will choose the most profitable one based 
on electricity prices. For instance, L1 in Fig. 5 has three 
different measures (red, blue, and grey lines) and L1 can 
follow only one of the measures in each activation 
period. 

 

The proposed model also does not require the 
information about baseline power consumption or 
material flow in industrial processes for the optimization. 
This is particularly valuable since some industries avoid 
sharing this information. 

 

Fig. 4 - Results of Case II 

 

 

 

  

 

 

 

 

 

Fig. 3 - Aggregated flexibilities used as input for Case II 

 

 

 

 

 

 

 
Fig. 5 - Different measures of aggregated load L1 
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Although we proposed the model for the industrial 
sector in this paper, it is applicable for other energy 
sector users such as electric vehicles and residential 
buildings, due to the generic format of the required data 
as input.  

This model and the evaluated cases have some 
limitations. We acknowledge especially that due to the 
unavailability of real data, our cases relied on synthetic 
data instead. Moreover, the calculation time of the 
problem increases as the optimization periods and 
number of loads increase.  

5. CONCLUSIONS 

In this study, we proposed an optimization model 
based on a generic data format to calculate the optimal 
energy flexibility scheduling for industrial loads. We 
evaluated the model in different simple and complex use 
cases including aggregated and non-aggregated loads, 
and results indicated the model’s capability to handle 
different cases and maximize profit from energy 
flexibility provision. In future research, we will consider 
adding energy storage systems to the model for flexibility 
purposes. We will also consider using heuristic methods 
to reduce the calculation time. 
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