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ABSTRACT 
 Accurate capacity estimation is crucial to ensure 
operational safety of Li-ion battery. In this paper, a novel 
capacity estimation approach is proposed for Li-ion 
battery cell. Two voltage-related features on probability 
density function based incremental capacity curve and 
average temperature are extracted as healthy indicators. 
Regression between healthy indicators and capacity is 
constructed using random forests. Results show that the 
capacity estimation error could be controlled within 
2.5% throughout the whole lifecycle of the battery. 

Keywords: Li-ion battery, capacity estimation, data-
driven, random forests. 

NONMENCLATURE 

Abbreviations 
CC Constant Current 
CV Constant Voltage 
IC Incremental Capacity 
OCV Open Circuit Voltage 
PDF Probability Density Function 
RF Random Forests 

1. INTRODUCTION
Accurate capacity estimation is helpful to avoid over-

charge or over-discharge of Li-ion battery, thus is crucial 
for ensuring operational safety [1]. Existing capacity 
estimation researches can be generally divided into two 
categories, namely model-based and data-driven based. 
Model-based methods adopt electro-chemical model or 
equivalent circuit model to capture the dynamic 
property of the battery and uses state estimation 
method like extended Kalman filter or particle filter to 
realize capacity estimation [2,3]. However, the 
robustness of the method is relatively weak because 

unsuitable prior probability distribution or noise variance 
settings in filtering algorithms will result in divergence of 
such kind of approach. Data-driven methods directly 
exploit the relationship between capacity and healthy 
indicators extracted from recorded data like current, 
voltage, temperature, SOC, etc. to realize capacity 
estimation, which is more robust and straightforward 
due to avoidance of battery modeling [4,5]. IC analysis is 
one of the most useful data-driven approaches to extract 
healthy indicators [6]. However, IC analysis is sensitive to 
measurement noise, which would greatly hinder the 
identification of the peak on IC curve thus introducing 
distortion to healthy indicators. In addition, current 
researches mainly focus on voltage-related healthy 
indicators on IC curve. However, temperature could also 
provide valuable information about battery degradation. 

In order to mitigate existing research gaps, this paper 
proposes a novel capacity estimation method which 
combines both voltage-related and temperature-related 
features. In order to depress the effect of measurement 
noise on feature extraction from IC curve, PDF approach 
is used to construct the IC curve from statistical view. 
Finally, RF is used to construct the regression model 
between capacity and healthy indicators.  

The reminder of this paper is organized as follows. 
Section 2 gives a brief introduction of the Oxford battery 
dataset for verification. Section 3 details the capacity 
estimation method together with basic knowledge about 
theoretical basis including PDF, IC and RF used in this 
paper. Section 4 verifies the effectiveness of the 
proposed method and Section 5 concludes the whole 
paper. 
2. OXFORD BATTERY DATASET

The Oxford battery dataset contains measurements
of battery ageing data from 8 small Li-ion pouch cells 
manufactured by Kokam with rated capacity 740mAh [7]. 
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The negative electrode material of the pouch cells is 
graphite and the positive electrode material is a blend of 
lithium cobalt oxide and lithium nickel cobalt oxide. The 
cells were all tested in a thermal chamber at 40°C and 
cycled using a CC-CV charging profile, followed by a 
discharging process obtained from the urban Artemis 
profile. Characterization tests including 1C 
(current=740mA) and pseudo-OCV (current=40mA) 
charging and discharging tests were conducted every 100 
cycles of drive cycles. The recorded data includes 
voltage, temperature and charge. The calibrated capacity 
can be derived from the average of accumulated charge 
in pseudo-OCV charging and discharging tests. In this 
paper, 1C charging data of cell #3 is used to train the 
model and 1C charging data of cell #1 is used to verified 
the effectiveness and generalization ability of the 
proposed method. 
3. CAPACITY ESTIMATION FRAMEWORK

The general capacity estimation framework is as
follows. Firstly, the PDF-based IC curve is constructed 
and the location and amplitude of the second peak are 
extracted as the voltage-related healthy indicators. Then 
the average temperature during charging process is 
calculated as the temperature-related healthy indicator. 
The RF based regression model, which could combine 
voltage and temperature related healthy indicators 
automatically, uses the above three healthy indicators as 
input and capacity as output. The RF model More details 
can be found below. 

3.1 Voltage-related healthy indicators extraction 

The PDF-based IC curve can be constructed using 
voltage data during the whole charging process with 
voltage as x-axis and PDF as y-axis. Intuitively, PDF can be 
regarded as the normalized frequency. A higher PDF 
indicates a more frequent appearance. Because PDF 
methods substituting the division calculation (whose 
denominator maybe close to zero) in original IC analysis 
by statistical cumulative counting, its robustness is 
greatly improved. PDF can be constructed using 
following kernel density formula [8]: 

𝑓ℎ(𝑥) =
1

𝑛ℎ
∑ 𝐾(

𝑥 − 𝑥𝑖
ℎ

)
𝑛

𝑖=1
 (1) 

where x1, x2, …, xn are random samples from an unknown 
distribution, which are voltage sampling data here. n is 
the sample size. K(·) is the kernel smoothing function and 
normal kernel is used in this paper. h is the bandwidth. 

Fig.1 demonstrates the voltage sampling data 
together with corresponding PDF-based IC curve during 
1C charging process for cell #3 throughout whole 
lifecycle. It can be seen from Fig.1(a) that as the battery 
degrades, the charging process shortens, which indicates 
the decreasing capacity. From Fig.1(b), it can be found 

that there are three peaks on the PDF-based IC curve. 
However, the first peak will disappear when the battery 
is deeply aged and the third peak is relatively flat and not 
easy to extract. Thus, only the second peak is used for 
feature extraction. The second peak appears around 
3.85V, which means voltage with around 3.85V appears 
most frequently. It corresponds to the plateau in original 
voltage curve. The monotonous property that the second 
peak gradually shifts rightward and downward as battery 
degrades provides valuable information for capacity 
estimation. Thus, the location and amplitude of the 
second peak are extracted as voltage-related healthy 
indicators. Fig.2 shows the relationship between voltage-
related healthy indicators and capacity. 

(a) Voltage

(b) PDF-based IC curve
Fig.1 Voltage sampling data together with corresponding 
PDF-based IC curve during 1C charging process for cell #3 
throughout whole lifecycle 

(a) Voltage location of second peak
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(b) PDF amplitude of second peak
Fig.2 Relationship between voltage-related healthy 
indicators and capacity 

3.2 Temperature-related healthy indicators extraction 

Besides voltage, temperature data could also 
provide valuable information about battery state-of-
health. Fig.3 shows the change of temperature for cell #3 
during 1C charging process throughout whole lifecycle. It 
can be seen that the temperature gradually increases as 
the battery degrades, which can be explained by the 
increasing ohmic resistance. Except the abnormality of 
temperature data for the 3700th cycle, all the 
temperature data shows relatively consistent increasing 
trend with decreasing capacity. Thus, average 
temperature is extracted as the third healthy indicator. 

(a) Temperature

(b) Average temperature
Fig.3 Change of temperature for cell #3 during 1C 
charging process throughout whole lifecycle 

3.3 Random forests 

RF is an integrated machine learning method that 
combines multiple decision trees to produce repeated 
prediction results for the same question. For each tree, 
the RF method performs self-help sampling, so that the 
calculation of error estimation can be based on the out-
of-bag sampling data. When generating a tree, each 
node of the tree is randomly generated, and the 
segmentation variables of each node are generated by a 
small number of randomly selected variables. Finally, a 
lot of decision trees will be produced, so it is called 
"random forests". The RF used for regression averages 
the results of these trees to obtain the predicted value. 

The steps of RF regression algorithm are: 
(1) Bootstrap is used to extract m self-help sampling

sets from N original samples to construct m regression 
trees. The unselected samples form m out-of-bag data 
sets. 

(2) At each node of each tree, k partition variables
(k<p) are randomly selected from all p explanatory 
variables, in which the optimal branch is selected 
according to the branch optimality criterion. 

(3) Each regression tree starts top-down recursive
branching until the segmentation termination condition 
is met. 

The advantages of RF algorithm include fast learning 
process and strong robustness to the noise in the data 
set. There is no need to reserve some additional data for 
cross validation, and the effect of the algorithm is 
evaluated by using out-of-bag data. In addition, it is 
insensitive to multicollinearity. 

More detailed mathematical deduction of RF can be 
found in Ref. [9]. 
4. VERIFICATION OF THE PROPOSED METHOD

The proposed method is trained by the data of cell
#3 and then the trained model is verified using the data 
of cell #1. This practice ensures that the data of cell #1 is 
totally unseen for the trained model during training 
process, which is used for fair generalization ability 
assessment during test process. The estimation 
performance on training dataset of cell #1 and testing 
dataset of cell #3 are shown in Fig.4 and Fig.5 
respectively. It can be seen that thanks to the powerful 
regression capability of RF, the estimation error on 
training dataset is practically neglectable. The estimation 
absolute relative error on data of cell #1 is controlled 
within 2.5%, which verifies the effectiveness and 
generalization of the proposed method. 
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(a) Real and predicted capacity

(b) Relative error
Fig.4 Estimation performance of the proposed model on 
training dataset, namely cell #3 

(a) Real and predicted capacity

(b) Relative error
Fig.5 Estimation performance of the proposed model on 
test dataset, namely cell #1 

5. CONCLUSION
In this paper, a novel capacity estimation method is

proposed. Two voltage-related healthy indicators and 
one temperature-related healthy indicator are extracted 
from voltage and temperature data. Regression mapping 
from healthy indicators to capacity is constructed using 
RF. Result shows that the proposed method could 
control the capacity estimation error below 2.5%. 
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