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ABSTRACT 

Traditional building automation controllers are 
having low performance in dealing with non-linear 
phenomena. In recent years, model predictive control 
(MPC) has become a notable control algorithm for 
building automation system capable of handling non-
linear processes. Performance of model-based 
controllers, such as MPC, is depending on reasonably 
accurate process models. For a building using baseboard 
radiator heater, a non-linear model is a more reliable 
representation of heat distribution system. Therefore, 
this study aims to present a non-linear gray-box model 
for a residential building connected to the local district 
heating network that is equipped with radiator heat 
emitters. The model is supposed to forecast the indoor 
air temperature as well as the radiator secondary return 
temperature. The model is validated using 
measurements collected from a building in Västerås, 
Sweden. In addition to a better accuracy, another 
motivation behind using a non-linear heating circuit 
model is to enhance its generalization performance. 
With the added benefits of accuracy and generalization, 
this model is expected to extend practical MPC 
implementation for such buildings.  
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NONMENCLATURE 

Abbreviations 
MPC Model predictive control 

BIPV 
Building integrated photovoltaic 
panels 

RC Resistance-capacitance 
RBS Rule-based controller 
Symbols 

Rax 
Heat transfer resistance between the 
indoor air and the building external 
environment 

Rae 
Heat transfer resistance between the 
indoor air and the building envelope 

Rai 
Heat transfer resistance between the 
indoor air and the building internal 
mass 

Rex 
Heat transfer resistance between the 
building envelope and the building 
external environment 

1. INTRODUCTION
Residential housing represents 15% of total final

energy demand in Sweden of which the majority is 
attributed to space heating and domestic hot water 
demand [1]. Sitting at a market dominance of around 
50%, district heating is currently the leader of heat 
supply to buildings [2]. The basic idea of district heating 
is to supply heat from centralized sources through a heat 
distribution network to satisfy customer demands. The 
climate goals and regulations encourage suppliers to 
strive towards using renewable sources in the heating 
sector. The integration of renewable sources into district 
heating system will require reductions in district heating 
supply and return temperatures [3]. In addition, the 
system becomes more sophisticated for control and 
management when various decentralized renewable 
energy sources are joined together. This integration 
emerges the need for advanced modeling and control 
strategies.  

MPC is among advanced control techniques that has 
become an ideal strategy in research on intelligent 
building operation [4]. MPC controller has the potential 
of thermal comfort improvement with simultaneous 
increase in energy savings compared to other 
conventional rule-based controllers (RBCs). However, 
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practical applications are still in early stages [4]. In MPC, 
a model representation of the building is used to obtain 
a control signal that minimizes the errors between a 
desired setpoint and the simulated output. The quality of 
this control effort relies on the model accuracy. Due to 
non-linear processes occurring inside a building, an 
exclusively physical model known as white-box model 
ensures a high fidelity which is preferred. However, the 
amount of computational power required for the MPC 
implementation for these complex models makes them 
infeasible for control purposes. On the contrary, data-
driven models, known as black-box models, only rely on 
measurement data which puts them at an advantage of 
a faster simulation time. The drawback lies in the fact 
that without inclusion of any physical laws, some 
patterns might remain undetected in case the number of 
features in observational data is insufficient. A third 
category for thermal modeling of buildings are known as 
gray-box modeling. It is a hybrid methodology in which 
the coefficients of the equations from physics-based 
models are evaluated using data. This method enables a 
trade-off between accuracy and simplicity which makes 
it suitable for control applications and hence is proposed 
in this paper for a building that is connected to a district 
heating system.  

Determination of gray-box model structure depends 
heavily on prior knowledge about system dynamics, 
while the unknown parameters are evaluated by 
measurement data. Complex system dynamics are 
observed in ordinary households that are shifting toward 
prosumers; customers who both produce and consume 
energy such as electricity and district heating [5]. A linear 
model can approximate a non-linear process with 
reasonable accuracy if its non-linear characteristic is 
weak. However, linearization is not a suitable technique 
to analyze complexities of a prosumer. Prosumers entail 
non-linear phenomena such as radiative heat transfer 
when equipped with building integrated photovoltaic 
panels (BIPV) or free convection in case of using natural 
ventilation. A non-linear gray box model is supposed to 
adequately predict dynamic behavior of prosumers. 

The non-linear behavior is not only limited to 
prosumers. A non-linear model is a more precise 
dynamical description of the heat exchange process for a 
baseboard radiator heater. However, only a few studies 
considered that in the literature [6-8]. A non-linear gray-
box model is introduced for a building with a radiator-
based heating system in this paper. This non-linear 
modeling has a desirable effect on generalization 
performance of the model. The aim of the present study 
is to create a model that can further be integrated with 
an MPC controller and facilitate the practical 
implementation of MPC for buildings.  

 
2. DESCRIPTION OF BUILDING AND DATA  

The case study is a nine-story building with 31 
residential units located in Västerås, Sweden. 
Apartments are ventilated by means of an FTX system. 
The building uses district heating for domestic hot water 
and space heating. Two months data (from December 
2019 to January 2020) were collected with an interval of 
15 minutes from the sensors installed inside the 
apartments and the substation. The collected data 
consists of indoor temperature data for all apartments, 
supply and return temperature of the water circuit on 
both primary and secondary side, the valve openings, 
and the outdoor air temperature. The data is divided into 
two parts. One for training the model and another set for 
testing model forecasting performance. The training 
dataset is composed of 2998 elements collected from the 
December 1,2019 to December 31,2019. The testing 
dataset includes 3004 observations recorded from 
January 1,2020 to January 31,2020. This data is used to 
identify unknown coefficients of the gray-box model. 

 
3. MODEL STRUCTURE 

Resistance-capacitance (RC) technique which is 
widely used for thermal modeling of buildings is opted. 
The concept is modeling different building elements 
based on an analogy to their equivalent electric circuit 
component. Heat load calculation and control are two 
major topics in which RC models are mostly utilized in the 
building energy domain. A great amount of research is 
done on the subject to find the optimal model order 
capturing the building thermal dynamics [9-11]. 
However, a unified standard framework for choosing the 
appropriate structure is not available yet [12]. 

We proposed a third-order RC model which 
represents the linear thermal inertia structure for 
building coupled with a non-linear heating system 
model. The energy balance for the indoor air, the 
exterior walls, the internal mass, and the baseboard 
heating radiator are given as follows: 
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𝐶𝑟𝑎𝑑

𝑑𝑇𝑟𝑒𝑡

𝑑𝑡
= 𝑄̇𝑠𝑢𝑏 − 𝑄̇𝑟𝑎𝑑 (4) 

where Tair is the mean indoor temperature and Cair is 
its corresponding capacitance, Tenv  is the envelope 
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temperature and Cenv is its corresponding capacitance, 
and Tint is the internal thermal mass temperature with 
Cint  as its capacitance. Rax , Rae , Rai , Rex  are 
thermal resistances between heat mediums. SA defines 
the floor area according to which the building’s primary 
energy was calculated. Building’s primary energy was 
available in its energy report.  

Q̇int is the internal heat gain that is determined by 
the identification process. Internal heat gain 
approximate range was obtained based on historical 
measurements entailing equipment, lightning, and 
number of occupants. Solar heat gain was discarded as it 
was almost zero during the whole simulation period. 

Ventilation heat exchange occurs by purposeful hot 
inside air exchange with the cold outside air during 
heating season which can be estimated as: 

 𝑄̇𝑣𝑒𝑛 = 𝑉𝑖𝑛𝑓(𝐴 + 𝐵(𝑇𝑎𝑖𝑟 − 𝑇𝑒𝑥𝑡)) (5) 

according to [13] by a linear relationship between the 
inside and outside environment. A  and B  are 
coefficients that are found by the identification process 
and their range were selected based on historical 
measurements. Text  is the building external 
environment temperature. Vinf carries out the 
information of design flow rates and schedules 
associated with the ventilation system. Since there were 
no certainty and no historical measurements regarding 
the effect of wind speed and infiltration, they were 
excluded from the model. 

Heat from the secondary side water loop is 
transferred to the zone via radiators. The term that 
represents the heat flow from the heating circuit at the 
substation into the baseboard heater is: 

    𝑄̇𝑠𝑢𝑏 = 𝜑𝑣𝑚̇𝑟𝑐𝑝(𝑇𝑠𝑢𝑝 − 𝑇𝑟𝑒𝑡) (6) 

where φv is the valve opening at the substation, Tsup 

is the secondary supply temperature of the radiator, cp 

denotes water specific heat capacity, and ṁr  is the 
rated water mass flow rate that is obtained from the 
manufacturer’s data sheet. 

The discrete-element radiator used has the following 
characteristic equation [7]: 

 𝑄̇𝑟𝑎𝑑 =  𝐹1(𝑇𝑟𝑒𝑡 − 𝑇𝑎𝑖𝑟)𝑎+1 (7) 

where Tret  denotes circulating secondary return 
temperature of the radiator, F1 is the surface area of 
the radiator, and a is the characteristic coefficient of 
the radiator. Overall, the model has: 

• Four variable states (dTair, dTenv, dTint, dTret) 

• Three input variables (Text, φv, Tsup) 

• Two output variables (yTair, yTret) 

• Fourteen parameters to be identified. 
 

The identification process was carried out in MATLAB 
by following its format to create an idnlgrey model object 
due to its suitability for identifying non-linear systems. 
The unknown parameters were found by fitting 
measured data to the predicted model response. 
Optimal values should minimize the cost function, which 
is a mean square error, given by a sum of systematic 
error (bias) and random error (variance). This penalty 
function is thus a tradeoff in creating the model [14]. 
Therefore, optimal set of parameters (θopt) in vectorized 
format is obtained from: 

 
𝜃𝑜𝑝𝑡 = argmin (

1

𝑁
∑ 𝜀2(𝑡, 𝜃)

𝑁

𝑡=1

+
1

𝑁
𝜆𝜃𝑇𝑅𝜃) 

(8) 

where t is the time variable, N is the number of data 
samples, and ε(t, θ) is the predicted error computed as 
the difference between the observed output and the 
predicted output of the model. The second term is 
regularization which modifies the cost function by adding 
a term proportional to the square of the norm of the 
parameter vector θ. λ and R are tools to find a good 
model that balances complexity and provides the best 
tradeoff between bias and variance, and they were 
selected by trial and error in this work.  

4. RESULTS 

Table 1 reports the parameter estimates of the 
model presented. All identified parameters had a low 
standard deviation compared to their value, except for 
Vinf  and B. As mentioned in Section 3, there was no 
measurement regarding the wind speed and infiltration 
for the simulation period, which made an accurate 
identification hard as there was a high level of 
uncertainty. 

   
Table 1. Identified parameters for the case-study building. 

Parameter Value Standard 
deviation 

Unit 

Cair 3152 43.58 [J ℃⁄ ] 
Rax 0.229 0.005 [W ℃⁄ ] 
Rae 0.229 0.029 [W ℃⁄ ] 
Rai 0.752 0.256 [W ℃⁄ ] 
F1 0.182 0.011 [W ℃⁄ ] 
a 2.275 0.0399  

Vinf 0.002 0.101 [Jm3 sec⁄ ] 
A 0.103 0.002 [1 m3⁄ ] 
B 0.005 0.02 [1 m3℃⁄ ] 

Q̇int 0.037 0.0007 [𝑊] 
Cenv 920.9 29.71 [J ℃⁄ ] 
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Rex 0.983 0.119 [W ℃⁄ ] 
Cint 543.9 30.60 [J ℃⁄ ] 
Crad 32.79 2.47 [J ℃⁄ ] 
 
Fig. 1 illustrates how the system is simulated given 

only the initial states for the training dataset. It shows 
the time series plot of measured outputs and the 
simulation outputs. Except for the last day of the 
simulation, the difference between simulation and 
measured indoor temperature is less than 0.5℃ which is 
normally not detected for human’s thermal comfort. 
There is an abrupt change in supply temperature on 
December 29, which caused a large draft in simulating 
the indoor temperature. Since we were unable to 
confirm whether this behavior was caused by a   

measurement error, it was not omitted from the dataset. 

 
Fig. 1 Comparison between the simulated and the 

measured outputs for the training dataset.  

The effectiveness of the model is also verified on the 
test dataset and the result is illustrated in Fig. 2 . The 
model can forecast a long horizon in the future without 
losing accuracy. The zone air temperature difference 
between model and simulation is less than 0.5℃ for all 
timesteps. 

 

Fig. 2 Comparison between the simulated and the 
measured outputs for the test dataset. 

The histogram of errors obtained from the identified 
model outputs are illustrated in Fig. 3. This error range 
indicates that the model has a suitable forecasting 
ability. The Gaussian distribution fit curve is also drawn 
to assess the mean and deviation of both outputs. The 
indoor temperature error has the mean value of 0.24 and 
a standard deviation of 0.16. For the secondary return 
temperature, the mean value and standard deviation of 
error are 0.24 and 0.33. The distribution confirms that 
forecasts are likely skewed, and the mean value might 
not be the best representative of the dataset. 

 
Fig. 3 Histogram of output distributions and their 

respective best-fit Gaussian distribution. 
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5. CONCLUSION 

This paper presented a non-linear gray-box model to 
describe the heat dynamics of residential buildings 
connected to district heating systems. The model 
consists of two parts with particular attention to building 
thermal inertia and the heating system. The assumption 
of considering a linear behavior for baseboard radiator 
heaters, reduce the generalization ability of the model 
for other case studies. Therefore, a non-linear model was 
proposed in this study to represent a more realistic 
behavior of radiator-based heating system. The purpose 
of the model was to predict the indoor temperature and 
the radiator secondary return temperature. The model 
performance was evaluated for a training and a test 
dataset. The results showed an acceptable accuracy over 
a relatively long future horizon based on the histogram 
of errors. 

The results of this case study are supposed to be 
integrated into an MPC controller as part of the project 
plan in our future publications. 
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