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ABSTRACT 
 China’s wastewater treatment plants (WWTPs) have 
consumed a large amount of electricity, which is 
threatening the sustainable development of regions with 
severe energy scarcity. In this paper, we developed a 
novel framework for evaluating the technical efficiency 
of WWTPs and identifying the key pathways to save 
electricity and improve treatment efficiency. First, 
multiple regional initial and integral electricity scarcity 
risks were investigated based on the proposed electricity 
stress index (ESI). Then, an index system covering two 
inputs (scale and electricity consumption) and six 
outputs (COD, BOD, SS, NH3-N, TN and TP pollutant 
removal volumes) was constructed to assess the 
technical efficiencies of 3776 WWTPs by introducing the 
multiple electricity scarcity risks into data envelopment 
analysis (DEA). The results showed that the original 
average technical efficiency score of investigated 
samples was 0.340, of which only 28 samples were 
relatively effective. The remaining WWTPs had different 
levels of input excesses and over 60% electricity 
overcapacity, indicating that the substantial potential for 
technical efficiency improvement and electricity saving. 
Moreover, regional electricity scarcity risks differed 
significantly and the technical efficiency changed 
significantly considering ESI. This paper may present a 
useful tool for the technical efficiency assessment of 
WWTPs. 
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1. INTRODUCTION 
Energy efficiency is important for the sustainable 

development goals (SDGs) of the whole world. China’s 
WWTPs energy consumption accounted for 1-2% of total 
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social energy consumption [1] and exceeded 1.67 × 1010 
kWh of total electricity consumption in 2017[2]. 
Electricity demand in WWTPs will keep growing due to 
increasing final consumption demand as population and 
economic growth. More importantly, electricity scarcity 
has been recognized as a critical challenge of electricity 
sustainability. At the same time, there is a strong 
scientific consensus that the ambitious carbon emission 
reduction plans of China may influence the energy supply 
and its security. The increases in wastewater treatment 
electricity consumption demand and low efficiency 
(about 0.31 kWh/m3) may aggravate the energy scarcity 
crisis.  

It is important to measure the energy efficiencies of 
enterprises and regions to monitor energy consumption 
sustainability. There are two main methods that have 
been used to quantify energy efficiency [3]: single-factor 
energy efficiency and total-factor energy efficiency [4]. 
There are three main energy efficiency calculation tools: 
data envelopment analysis (DEA), Life cycle assessment 
(LCA) and multiple criterion analysis (MCA) [5]. DEA has 
been widely considered as one of the methodologies to 
examine the level of sustainability [6] and DEA has been 
widely applied to investigate energy and environment 
issues. DEA method evaluates the energy efficiency of 
decision-making units (DMUs) with multiple inputs and 
outputs based on linear programming, and energy is one 
of the input factors [7]. In addition, economic 
transactions also can redistribute energies among 
regions, then affecting the entire energy system and 
energy efficiency. 

In recent years, research interests have been found 
in technical efficiency between different technical 
groups [8], spatio-temporal difference analysis [3], 
operating variables investigation for energy efficiency 
differences and multiple input and output factors 
analysis [9]. Gao et al. used the DEA model to evaluate 
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the efficiencies of wastewater treatment plants and 
explored the influence factors of the operational 
efficiency [10]. In addition, the ecological and 
environmental efficiency of wastewater treatment 
plants is also a hot spot. Wu et al. analyzed the pollutant 
emission efficiency of WWTPs in 68 cities from 2006 to 
2015 through DEA, determining scale effects and the 
differences between cities from both temporal and 
spatial perspectives [11]. Castellet et al. used a non-
radial DEA model to compute the efficiency of 49 largest 
WWTPs [12]. Hernández-Chover et al. evaluated the 
efficiency of 217 WWTPs in the Valencian to learn the 
influence of scale economies in wastewater treatment 
processes [13]. Although some evaluations have 
considered the carbon emission properties of electricity 
to investigate the energy sustainability of WWTPs, the 
heterogeneity of energy scarcity has not been 
considered to evaluate the energy efficiency of WWTPs. 

The deficiency in existing studies is manifested in two 
aspects. Most of the existing studies tested the energy 
efficiency in different provinces of China and the 
differences of electricity scarcity in different provinces 
are barely studied. In addition, most research assumes 
that the regions are independent and lack interaction. 
Few studies consider the wastewater treatment energy 
efficiency space overflow and diffusion effect in inter-
regional economic trade. Thus, in this study, the 
Multiregional input-output (MRIO) analysis was applied 
to unveil the interregional and intersectoral economic 
relationships among regions and reallocate all the energy 
inputs to different consumers. 

This paper introduced the electricity scarcity 
indicators into the DEA method to provide a novel 
assessment framework to evaluate the sustainable 
performance of energy efficiency. In addition, the MRIO 
method has been applied to identify electricity scarcity 
and reveal the wastewater treatment electricity 
interaction among regions in accordance with the level 
of energy efficiency. The remainder of this paper is 
structured as follows: Section 2 explained the methods. 
Section 3 presented the empirical results of 3782 urban 
wastewater treatment plants in China. Further 
discussions and conclusions were presented in Section 4. 
The purpose of this study is to provide a novel 
assessment framework to evaluate the sustainable 
performance of WWTPs.  

  
2. MATERIAL AND METHODS  

2.1 Data and data processing 

The sectoral electricity consumption data and 
province-level MRIO data were obtained from CEADS. 
The WWTP operation data was obtained from the 
Chinese Urban Drainage Yearbook. the regional 
electricity consumption and generation data were 
obtained from the Chinese Energy Statistics Yearbook. 
Notably, the data for Tibet, Hong Kong, Macau and 
Taiwan were not available. 

Based on data availability, 42 sectors in the original 
MRIO table were aggregated into 31 sectors to match the 
format of the sectoral electricity consumption data. 
Based on the construction of the conventional DEA 
model, each wastewater treatment plant was defined as 
a DMU. The number of DMUs is required to be more than 
2 times the product of inputs and outputs to ensure that 
the samples are adequate and the efficiency index for 
each sample is comparable. 8 indicators from 3782 
DMUs were obtained, which include two input and six 
output indicators (shown in Table 1). 

To reflect the initial electricity stress levels, the data 
of the total electricity consumption and import was used 
to calculate the electricity stress index (ESI). To reflect 
the integral electricity stress levels, the data of the total 
electricity consumption and generation were used to 
calculate the integral energy stress index (VESI). The data 
of sectoral electricity consumption was used to calculate 
energy consumption intensity. All the ESI-related 
electricity data were obtained from China’s energy 
Statistical Yearbook and the results of MRIO analysis. 

2.2 Methods 

2.2.1 CCR and BCC models  

The CCR and BCC model are two basic DEA model. 
The CCR model evaluate the technical efficiency (TE) 
which express as a value from 0 to 1. The BCC model 
assesses the pure technical efficiency (PTE) which 
represents the effect of production and management 
on efficiency. The BCC model introduce the intensity 
variable vector λ, with the constraint that the sum of λ 
for all DMUs is 1, as in Eq. (1) 
𝑿 = (𝑥1𝑚  

𝑡 , 𝑥2𝑚 
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𝑇𝐸 = 𝑑(𝑥,𝑦,𝐶𝑅𝑆) = 𝑑(𝑥,𝑦,𝑉𝑅𝑆) × [𝑑(𝑥,𝑦,𝐶𝑅𝑆)/𝑑(𝑥,𝑦,𝑉𝑅𝑆)] =

𝑃𝑇𝐸 × 𝑆𝐸                                      (2) 
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Table 1 Statistical description of input and output indicators 

 
where φ represents the efficiency value of the DMU 
(serial number from 1 to n). i represents the serial 
number of input indicators from 1 to m, and r represents 
the serial number of output indicators from 1 to s. The 
quotient of TE and PTE is scale efficiency (SE), as shown 
in Eq. (2). SE reflects whether the scale of investment is 
optimal. only when both the PTE and SE reach 
effectiveness at the same time is the effectiveness of TE 
guaranteed. 

2.2.2 Initial and integral electricity index 
Energy stress index (ESI) was defined to reflect the 

degree of regional energy shortage. We introduced the 
electricity stress index (ESI) to quantitatively characterize 
the scarcity of electricity consumption in WWTPs of each 
region. Here, we defined the ESI as the ratio of the 
amount of energy consumption to the total energy 
consumption, as shown in Eq. (3) and Eq. (4). 

𝐸𝑆𝐼 = 𝐸𝐶 𝐸𝑃⁄                                 (3) 
𝑉𝐸𝑆𝐼 = (𝑉𝐸𝐶 + 𝐻𝐸𝐶) 𝐸𝑃⁄                      (4) 

where 𝐸𝑆𝐼  presents the energy stress index. 𝑉𝐸𝑆𝐼 
presents the integral electricity stress index. 𝑉𝐸𝐶 is the 
amount of regional final electricity consumption demand 
that could be calculated by MRIO analysis. 𝐸𝐶  is the 
amount of electricity consumption. 𝐻𝐸𝐶  is the 
household electricity consumption and 𝐸𝑃  is the 
energy generation.  

The MRIOA can track the resource transmission 
between sectors and regions. the total economic output 
of sectors in regions can be expressed as Eq.(5). 

𝑥𝑖
𝑟 = ∑  𝑛

𝑠=1 ∑  𝑛
𝑗=1 𝑧𝑖𝑗

𝑟𝑠 + ∑  𝑛
𝑠=1 𝑦𝑖

𝑟             (5) 

where 𝑥𝑖
𝑟  represents the total economic output of 

sector 𝑖  in province 𝑟 ; 𝑧𝑖𝑗
𝑟𝑠  represents intermediate 

input from sector 𝑖  in province 𝑟  to sector  𝑗  in 
province 𝑠; 𝑦𝑖

𝑟 represents final demand of sector 𝑖 in 
province 𝑟. 

𝐴 = [𝑎𝑖𝑗
𝑟𝑠]

𝑛×𝑛
                            (6) 

𝑎𝑖𝑗
𝑟𝑠 = 𝑧𝑖𝑗

𝑟𝑠 𝑥𝑗
𝑠⁄                             (7)         

where 𝐴 represents the direct consumption coefficient 
matrix of the whole study area. The direct consumption 
coefficient 𝑎𝑖𝑗

𝑟𝑠  represents the amount of input from 

sector 𝑖  in province 𝑟 directly consumed by sector 𝑗 
in province 𝑠  per unit of economic output; 𝑧𝑖𝑗

𝑟𝑠 

represents intermediate input from sector 𝑖 in province 
r to sector 𝑗  in province 𝑠 ; 𝑥𝑗

𝑠  represents the total 

economic output of sector 𝑗 in province 𝑠. 
𝑋 = 𝐴 × 𝑋 + 𝑌                           (8) 
𝑋 = (𝐼 − 𝐴)−1𝑌                          (9) 
𝐿 = (𝐼 − 𝐴)−1                          (10) 

where 𝑋 represents the total economic output column 
vector; 𝐴 is the direct consumption coefficient matrix; 
𝑌 represents the final demand matrix; 𝐿 is the Leontief 
inverse matrix. 

We first use MRIOA to calculate the direct electricity 
intensities of each sector in different regions. That we 
can calculate the VEC of different regions. 

𝑇 = 𝐷 × 𝐿                             (11) 

𝐷 = [𝑑𝑗
𝑠]
1×𝑛

                            (12) 

𝑑𝑗
𝑠 = 𝑝𝑗

𝑠 𝑥𝑗
𝑠⁄                             (13) 

where 𝐿  denotes the direct coefficient of electricity 
consumption for sector 𝑗; 𝑝𝑗

𝑠 denotes direct electricity 

consumption of sector 𝑗 ; 𝑥𝑗
𝑠  denotes the total 

economic input of sector 𝑗. 
the calculation formula of them is as follows: 

Indicator Unit Min Max Mean Total 

Input      

Design scale (X1) 104 m3/d 0.04 280.00 4.64 17535.01 

Electricity consumption（X2） kWh 500.00 203399799.00 4293606.00 16234124872.00 

Output (amount of pollutant removal)      

COD (Y1) 

kg/kWh 

0.84 222004.03 3490.28 13196730.29 

BOD (Y2) 0.36 100803.56 1533.43 5797889.83 

SS (Y3) 0.73 134462.03 2525.30 9548144.94 

NH3-N (Y4) 0.37 21414.34 333.56 1261189.23 

TN (Y5) 0.26 14799.38 336.24 1271310.42 

TP (Y6) 0.02 2597.35 49.85 188476.78 
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𝑊 = �̂� × 𝐿 × 𝑌                         (14) 

𝑉 = [𝑣𝑟𝑠]𝑛×𝑛 = ∑  𝑛
𝑖=1  ∑  5

𝑦=1  𝑤𝑖𝑦
𝑟𝑠           (15)

 
where 𝑊  represents the final electricity demand 
matrix. 𝑉 represents the inter-province transfer matrix 
of electricity; 𝐷^ represents the diagonal matrix of 𝐷; 
𝐿  represents the Leontief inverse matrix; and 𝑌 
represents the final demand matrix. 𝑣𝑟𝑠  represents 
electricity transfer from province 𝑟 to province 𝑠; 𝑤𝑖𝑦

𝑟𝑠 

represents electricity consumption of sector 𝑖  in 
province 𝑟 driven by final demand 𝑦 in province 𝑠. 

We reassessed the technical efficiency using the 
new input indicators X21 and X22 as the input, as shown 
in Eq.(16) and Eq.(17) respectively. 

𝑋21 = 𝐸𝑆𝐼 ×𝑊𝐸𝐶                      (16) 
𝑋22 = V𝐸𝑆𝐼 ×𝑊𝐸𝐶                     (17) 

where 𝐸𝑆𝐼 presents the initial electricity stress index; 
𝑊𝐸𝐶 represents the electricity input of WWTPs. V𝐸𝑆𝐼 
presents the integral electricity stress index.  

 
3. RESULTS 

3.1 Energy efficiency performance 

In this study, the CCR model based on VRS was 
established. The technical efficiency (TE) of 3782 
wastewater treatment facilities has been calculated and 
the result was shown in Fig. 1. We considered that a DMU 
is efficient when its score is 1. It could be seen that the 
efficiency levels of TE and PTE for the whole sample were 
low. More than 90% of the WWTPs showed a PTE score 
between 0 and 0.600 among them 470 samples with a 
PTE lower than 0.2. only 38 of the 3782 WWTPs had a 
PTE score of 1. The average TE and PTE scores of samples 
were 0.340 and 0.372 which can be concluded that the 
wastewater treatment facilities studied could save over 
60% of their inputs if they operated at the efficiency 
frontier. Only 28 wastewater treatment facilities were 
technically efficient (TE=1). 

For recognizing regional efficiency discrepancies, the 
provincial-level average, maximum and minimum PTE of the 
31 provinces was calculated based on the VRS assumption and 
was showed in Fig 2. Xinjiang (0.544) owned the highest mean 
PTE and followed by Gansu (0.525) and Beijing (0.517). 
Shandong and Shanghai with the most WWTPs had PTE of 
0.439 and 0.436. Hainan owned the lowest mean PTE score of 

0.219, and Jiangxi, Tibet and Hunan had a relatively lower PTE 
below 0.300. We could also find that these regions showed 
lower maximum PTE and even Hainan had the maximum score 
of 0.399. More than 90% of Jiangxi, Hubei and Hunan’ WWTPs 
had PTEs below 0.500, indicating that these regions were 
significantly inefficiency and had a large potential of energy 
saving. 

 

3.2 Comprehensive energy efficiency performance 

Difference between the original TE and 
comprehensive TE (TE21 and TE22) which considered the 
regional electricity scarcity appeared in the basic 
statistics and was shown in Fig. 3. Xinjiang, Gansu, Beijing 
were the top three regions in original TE score, Yunnan, 
Xinjiang, Gansu were the top three regions in TE21 score. 
Xinjiang, Gansu, Ningxia were the top three regions in 
TE22 score. Except Yunnan, Ningxia, Shanxi, Sichuan, 
Anhui, Guizhou and Hubei presented TE21 scores 
increase, the other 22 regions showed TE21 scores 
decrease. As for the direct scarcity power technical 
efficiency (TE21) and virtual scarcity power technical 
efficiency (TE22), All region’s TE22 average scores were 
lower than TE21 average scores. Jiangxi and Hainan’ 
score rankings were lowest and significantly reduced 
after considering the power scarcity. Besides Zhejiang, 
Fujian, Guangxi, Guangdong and Hunan also had a 
relatively lower technical efficiency and efficiency scores 
decreased. More importantly, most of these regions 
were identified as power supply provinces of water 
production and supply products which cause more 
inefficient power consumption. On a positive note, the 
Jiangsu who had lower technical efficiency was identified 
as the biggest power consumer of water production and 
supply products and outsourced most of the power 
consumption demand to higher efficient regions such as 
Shandong, Jilin and Yunnan, which reduced the use of 
locally inefficient power (Fig.4). 

 
Fig.2 The average, maximum and minimum PTE 

scores. for regions.. 

 
Fig. 1 The TE and PTE scores for each WWTPs. 
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4. DISCUSSION AND CONCLUSION 
In order to comprehensively assess the energy 

efficiency of WWTPs based on electricity scarcity, a novel 
method that combines the DEA and MRIO methods is 
constructed to evaluate the energy performance of 
WWTPs. The proposed method was applied to test the 
electricity efficiency and sustainability performance of 
WWTPs in China. The technical efficiency changed 
significantly considering ESI. In addition, the analyses 

showed that rich electricity resource endowment 
strongly underpinned local WWTPs’ good electricity 
efficiency performance. The power supply provinces who 
had low original electricity efficiency and observed lower 
efficiency increased the regional electricity gap. Those 
regions that have higher energy efficiency and import 
large amount of products from regions with low energy 
efficiency for water production and supply could 
aggravate the risk of energy sustainability nationally.  
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