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ABSTRACT 
  Building Integrated Photovoltaics (BIPV) with 

Energy Storage Systems (ESS) enables buildings to play a 
crucial role in on-site PV consumption. However, due to 
the uncontrollability of PV, buildings often struggle to 
fully utilize it in real time. This paper proposes a 
decentralized cooperative power dispatch approach 
based on multi-agent proximal policy optimization 
(MAPPO) for cluster consisting of multiple BIPV with ESS. 
To acquire reliable strategies, a digital twin (DT) is 
employed as a sample and training environment for 
MAPPO to minimize cumulative grid power 
replenishment. An example of a small-scale building 
cluster is used to demonstrate the coupling of MAPPO 
and DT. The decentralized dispatch strategy is obtained 
with a one-hour time step. Verification results indicate a 
9.85 MWh boost in PV self-absorption compared to a 
self-generating self-using strategy. Leveraging DT opens 
up further possibilities for applying MAPPO to power 
dispatch challenges. 
 
Keywords: Multi-agent Proximal Policy Optimization, 
renewable energy, digital twin, decentralized dispatch, 
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NONMENCLATURE 

Abbreviations  

BIPV Building Integrated Photovoltaics  
ESS Energy Storage Systems 
PV Photovoltaic 
MADRL Multi-agent deep reinforcement 

learning 

MAPPO Multi-agent proximal policy 
optimization 

DT Digital twin 
RERs Renewable energy resources 

Symbols  

Eci  Charging power in building i (kW) 
Efi  Net outflow of electrical power from 

building i (kW) 
Eg   Net power acquisition from the 

public grid (kW) 
Ei  Power consumption of building i 

(kW) 
Eti  Electrical power converted to heat of 

building i (kW) 
Ew  Power loss in the cluster (kW) 
i A building in the cluster 
T Dispatching cycle duration (h) 
Sei  Generated power of PV of i (kW) 
Sei,consume  Direct invocation of PV power of i 

(kW) 
Sei,grid  PV power flow to the grid of i (kW) 
SoCi  Charge status of the battery of i (%) 

 A certain timestep 
Vsi(t)  Used capacity of the storage system 

at the end of the t in building i (kWh) 
Vmax,i  Maximum electrical storage capacity 

in building i (kWh) 
ηInvert  Inverter efficiency (%) 
ηRTE  Round-trip efficiency (%) 
ηSDC  Self-discharge efficiency (%) 
ηTransform  Transformer efficiency (%) 
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1. INTRODUCTION 
Building energy accounts for a considerable 

proportion of total social energy use [1,2]. RERs is a 
green, clean and efficient source to help the carbon 
neutrality [3,4]. The introduction of RERs, especially on-
site PV, into building side has attracted extensively 
attention, and BIPV is an extensively used form [5]. BIPV 
fully applies the electricity generated by distributed PV 
to building [6]. 

However, PV generation in BIPV is directly related to 
solar irradiance, so the supply of electricity would be 
intermittent and erratic. Districted ESS could be a buffer 
to help building self-consumption flexibly[7]. ESS in a 
building realizes a partial transfer of PV generation and 
transforms the task of balancing power from a short-
term issue to a mid-term issue [8]. BIPV with ESS enables 
every single building to generate, use and store 
electricity independently and makes the building to be a 
dealer actively. 

For a cluster composed of BIPV with ESS, power 
dispatch is a key issue. There are two main patterns for 
cooperative energy dispatch in building clusters: 
centralized and decentralized. Centralized pattern 
means that there is a top control center to collect all 
members information and decide their power 
transaction[9,10], while decentralized pattern means 
that each member collects information that affects it on 
its own and makes its own actions. When dealing with 
complex and variable scenarios, decentralized dispatch 
pattern performs better because of its strong flexibility 
and robustness [11,12]. 

Another important issue for the BIPV cluster with ESS 
is how to obtain a decentralized dispatch policy. MADRL 
is a popular data-driven methods to help multiple 
individuals to optimize their decisions and to consider 
the collective interest comprehensively[13]. MADRL 
could be applied in the building energy decentralized 
dispatching[14], so it is feasible to introduce MADRL for 
the decentralized power dispatch in the cluster 
composed of BIPV with ESS. 

Among mature MADRL algorithms, MAPPO as an on-
policy method is gradually used in various cooperative 
scenarios, like human-drone spatial crowdsourcing [15] 
and Internet of Vehicles Systems [16]. However, every 
MADRL algorithm would face the challenges of accuracy 
gap [17,18], time or cost limitation [19,20] and security 
lack [21] when applied in projects. In order to provide a 
reliable training environment for MAPPO, DT could be an 
effective solution by constructing digital virtual 
environment. 

In this paper, we innovatively introduce the coupling 
of MAPPO and DT to decentralized dispatch in a cluster 
composed of BIPV with ESS aimed at maximizing the 
long-term PV consumption within the cluster. To this aim, 
Section 2 discusses the optimized and customized 
dispatch model and MAPPO algorithm, and for the 
coupling of two emerging technologies, a data flow 
structure with building energy simulation engine and PV 
generation simulation engine is proposed. A case study 
is analyzed to demonstrate the feasibility and 
effectiveness in Section 3. Finally, Section 4 summarizes 
the conclusions. 

2. METHODOLOGY  
In this section, the power relationship of the cluster 

composed of BIPV with ESS is further elaborated. The 
energy framework including power generation, 
consumption and storage would influence the 
transaction mechanism and decentralized dispatch 
model. Transaction mechanism will determine the path 
and constraints of electricity flow, while dispatch model 
will affect policy acquisition and optimization. Therefore, 
the paper analyzes the cluster power structure as the 
premise of the optimization method, so as to realize the 
decentralized cooperative dispatch. 

2.1 Cluster energy framework 

In this study, the energy relationship within a cluster 
includes only electricity. The PV integrated with building 
is the form of rooftop PV, thus conforming to the 
maximum utilization of PV without consideration of 
additional space. Building side demands mainly come 
from heating and cooling loads, lighting and electrical 
equipment. 

 
Fig. 1 Energy Framework 
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The energy framework of a cluster composed of BIPV 
with ESS is shown in Fig. 1. With on-site PV and ESS, the 
building in the cluster is no longer just a consumer of 
electricity, but an energy-using place including PV and 
ESS is defined as a building. 

2.2 Energy transaction mechanism 

A cluster composed of BIPV with ESS could be 
considered as a microgrid. Therefore, the electrical 
transaction between gird and buildings can be simplified 
as a transaction between grid and the microgrid, called 
as an external transaction, and transaction between 
microgrid and buildings, called as an internal transaction. 
The former is to keep the local container at a “fixed level”, 
because microgrid has no buffering capacity and ignored 
transformation loss. The latter is to meet the electricity 
demand and balance the power inside the cluster. The 
energy transaction mechanism of the cluster is shown in 
Fig. 2. 

 
Fig. 2 Energy transaction Mechanism 

2.3 Energy dispatch model  

2.3.1 Objective function  

The optimized dispatch of cluster is aimed to 
minimize the invoked amount from grid to the whole 
cluster over a long period of time. The objective function 
is shown as: 

min C =  �Eg(t)
T

t

(1) 

Where C is the overall cumulative power from grid in 
T timesteps. Since this study mainly focus on the power 
invoked from the grid, the power exported to the grid is 
not considered. 

 
2.3.2 Constraint conditions  

With the battery loss, the state of charge SOCi(t) at 
each time step of building i can be expressed as: 

SOCi(t) =
Ec,i(t)ηRTE(i)

Vmax,i
+ SOCi(t− 1)ηSDC (2) 

SoCi(t)max ≥ SoCi(t) ≥ SoCi(t)min (3) 
Where Ec,i(t) refers to the charge and discharge 

amount of ESS in building i at time t, and Ec,i(t) > 0 
indicates charging, and vice versa; ηRTE depends on the 
direction of ESS charging and discharging.  

In every building, the power balance relationship is 
shown as: 

Eci(t) = Si(t)− Efi(t)− Ei(t) (4) 
With the inverter loss, the power balance 

relationship between buildings and microgrid is 
expressed as: 

E′g(t) +�ηInvert(i)Efi(t)
n

i

= 0 (5) 

Where E′g(t) is the external transaction power of 
microgrid, and E′g(t) ≥ 0  indicates the cluster 
requesting from the grid, and vice versa; n is the number 
of buildings in cluster; ηInvert (i) depends on the 
direction of Efi(t). 

The grid replenishes microgrid request timely, and 
ignore the overflow: 

Eg(t) = �
ηTransformE′g(t) ≥ 0, if E′g(t) ≥ 0

0, if E′g(t) < 0 (6) 

2.4 Decentralized power dispatch optimization 
algorithm based on MAPPO 

2.4.1 Markovian decision process  

In order to solve the power coordination dispatching 
problem of the above-mentioned clusters, cooperative 
MAPPO online optimization calculation is adopted. 
Markov Decision Process (MDP) is the most basic 
problem model of reinforcement learning, which can 
describe sequential decision problems. The dispatching 
problem could be described as a MDP, and the state of 
the next moment is directly obtained from the action and 
state of the last step, and the environment parameters 
of this step, so it is the specified state transfer form.  

In MAPPO algorithm, a building combined with PV 
and ESS is defined as an agent. For every agent, the state 
of agent i at timestep t is expressed as: 

sti = (Si(t), Ei(t), SoCi(t), holiday(t), t) (7) 
Where holiday(t)  is the judgement value of 

whether the day is a holiday(weekend) or not; t is the 
time value in the 24-hour system.  

For each agent, the power dispatch is mainly 
dynamically regulated by controlling the ESS on the basis 
of meeting the demand. Correspondingly, the action of 
agent i is defined as: 
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ati = �
Eci(t)
Vmax,i

� (8) 

Since the dispatch is the result of the cooperation of 
all buildings in the cluster, all agents have the same goal 
and all agents share a reward function. The goal is to 
minimize the accumulated invoked power from grid in 
power dispatch, while the goal is to maximize the 
accumulative reward in MAPPO. Thus, the reward 
function is setting as: 

R = K�(Efi(t) − (Si(t)−
n

i

Ei(t))) (9) 

Where K is a positive hyperparameter that needs to 
be determined by data experiments. 

 
2.4.2 Algorithm solution flow coupled DT  

The training process of MAPPO can be summarized 
as “centralized training, decentralized execution”, which 
belongs to the parallel learning in MADRL training 
schemes and has high computational efficiency[22].  

DT is a rising technology to transform physical world 
into a mathematical world, so DT could provide a 
platform for MAPPO to interact, train and validate. In 
addition, MAPPO needs to optimize policy based on 
rewards, and DT could feedback instant rewards. The 
structure for coupling MAPPO and DT is shown as Fig.3. 
At first timestep t, DT acquires the environment and 
system parameters to get Si(t)  and Ei(t) . SoCi(t) 
would be given a staring value. Actor network of MAPPO 
receives states from DT, and decide an action. Actions 
from all agents will form a joint action. DT calculates the 
reward with the joint action and states to update critic 
network, and updates SoCi(t) with eq (2). 

3. CASE STUDY 

3.1 Basic information 

The case selects a cluster composed of a hotel, a mall 
and an office building in Shanghai, China for 
decentralized dispatch. Since the accuracy of the 
prediction model is not deeply explored in this study, the 
meteorological parameters in DT are typical 
meteorological year parameters, and the occupancy 
rates are based on ASHRAE90.1. PVsyst and EnergyPlus 
are used for PV generation simulation and building 
energy consumption simulation respectively. The 
dispatching duration is a month, using January (744 h) as 
an attempt. The interval between two timesteps is 1 h. 
The Maximum electrical storage capacities of 3 buildings 
are 500kWh, 200kWh, and 1000kWh. The upper limit of 
SoC is defined as 100% and lower limit is 0. Since ESS is 
lithium-ion batteries, ηSDC = 99.99% , ηRTE(i) =

�
95%,  if Ec,i(t) ≥ 0 
1

95%
,  if Ec,i(t) < 0 , ηInvert(i) = �

97%, if Efi(t) ≥ 0 
1

97%
, if Efi(t) < 0  

and ηTransform= 1
98.5%

, the hyperparameter K in eq (9) is 
0.03.  

The actor network and critic network are fully 
connected with the neural network. The learning rate is 
5e-4, and the reward discount is 1. The simulation is 
based on Python, and the computer is configured with 
CPU Intel Core i5 and memory 16 GB. 

3.2 Results 

3.2.1 Training results  

The optimized The case se To verify the feasibility of 
the method, more than 6,000 episodes were trained, 
each episode consisting of one month (744 steps). The 
results of cumulative reward and C  for each episode 
obtained by training are shown in Fig. 4. It can be seen 

 
Fig.3. Structure for coupling MAPPO and DT 
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that the changes of reward and C are corresponding, and 
both begin to converge around 4000 episodes which 
indicates that the agents have learned the dispatching 
policy that minimizes C. The result shows that the setting 
of reward can effectively help the cluster to reduce C 
and to achieve the goal of minimize cumulative invoked 
power from public grid. 

 
Fig. 4 MAPPO training results 

 
3.2.2 Dispatching results  

In order to evaluate the dispatching effect of the 
converged strategy, 5 sets of data in January were run 
based on DT. The effect of common priority strategy was 
compared as control group. The Self-generating & self-
using (SGSU) strategy refers to that each building's PV 
generation flows first to the load, then to the battery, 
and finally to the microgrid and electricity load is first 
taken from PV power generation, followed by batteries, 
and finally from microgrids.  

The dispatch results from MAPPO and common 
priority strategy are shown in Table 1. Self-consumption 
rate of PV means the proportion of PV generation 
consumed in total consumption. PV consumption rate 
refers to the proportion of PV generation consumed in 
the total generation. MAPPO performs better and PV 
consumption increased by 4875.25 kWh for a month 
dispatch. 

Table 1 Dispatching results 
Strategy MAPPO SGSU 

PV 
consumption 

(MWh) 
212.80 202.95 

Self-
consumption rate 

of PV (%) 
37.57 35.83 

PV 
consumption rate 

(%) 
77.62 74.03 

Loads (MWh) 557.94 

PV generation 
(MWh) 274.16 

4. CONCLUSION 
The results obtained by case study proves the 

feasibility of coupling MAPPO and DT in decentralized 
cooperative power dispatch problem for the cluster 
composed of BIPV with ESS. The strategy developed by 
MAPPO training can reduce the cluster's accumulated 
power from the grid in a month, which means increasing 
the consumption of local PV power generation to 
strengthen the carbon neutrality goals. MAPPO can 
make full use of ESS to make cooperative dispatching 
more flexible with DT. Furthermore, the construction of 
DT and the model framework of MAPPO can be 
optimized according to the actual engineering situation. 
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