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ABSTRACT 
  The Air Handling Unit (AHU) system is influenced 

by various types of errors, which can cause thermal 
discomfort of occupants and energy waste in building. 
Therefore, an early and accurate Fault Detection and 
Diagnosis (FDD) is important for optimal control of 
building heating/cooling systems and increasing 
occupant productivity. The data-driven FDD is promising 
because it is convenient compared to the first principles-
based rule set that demands in-depth expertise. 
However, in order to realize the data-driven FDD for real-
life cases, the data imbalance problem in FDD must be 
solved. In this study, the authors suggest a novel 
approach that generates synthetic data from an entire 
building system simulation tool, HVACsim+ and then use 
them as a source model for applying transfer learning to 
a target AHU system. For the transfer learning, only the 
normal operational data from the existing target system 
was used. It is found that the transfer learning approach 
is satisfactory, confirming that the proposed method will 

be effective in mitigating the data imbalance issue in 
developing the data-driven FDD. 
 
Keywords: building energy, transfer learning, synthetic 
data, automated fault detection and diagnostics  
 

1. INTRODUCTION 
AHU systems are susceptible to various types of 

errors, such as sensor inaccuracies or equipment 
malfunctions, which can cause a decline in system 
performance, thermal discomfort for building occupants 
and energy waste in building. Therefore, there is a need 
for early diagnosis and resolution of these issues through 
the Fault Detection and Diagnosis (FDD) for 
improvement of building energy system efficiency.  

Compared to the physics-based FDD, the data-driven 
building system FDD requires less physical knowledge 
about the building or cooling/heating system and can 
enable the application of high-performance FDD at a 
relatively low cost. However, one of the key challenges 

 
Fig. 1. Workflow of FDD model development via Transfer learning  
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in applying the data-driven FDD to real-life cases is the 
data imbalance problem. Data imbalance refers to an 
uneven distribution of data among different classes, 
where certain classes have significantly fewer samples 
compared to others. This can result in a degradation of 
the learning performance for error situations and lead to 
a misconception about the prediction accuracy. For 
example, in a scenario where 95% of the data collected 
from an existing building represents normal operating 
conditions, and only 5% represent error conditions, the 
FDD model may be evaluated as having a high accuracy 
of 95% even if it predicts all data as fault-free.  

To overcome the aforementioned data imbalance 
problem, the authors propose a transfer learning 
approach for developing a building system FDD process 
following the workflow as shown in Fig.1. (1) Generate 
synthetic data (or source data) using an entire building 
system tool, or HVACsim+. (2) Develop a data-driven FDD 
model (source model) using the source data (FCU). (3) 
Develop an FDD model for the target system (single-zone 
VAV) using transfer learning where only normal 
operational data from the target system was used.  

2. DEVELOPMENT OF FDD MODEL  

2.1 Source vs. target system 

The target system was a single zone variable air 
volume (VAV) system as shown in Fig. 2. The authors 
used the AHU data measured from the experimental 
facility (Granderson, J., & Lin, G. 2019). Internal heat 
loads that were similar to those in a real commercial 
building were added in the experiment. Please note that 
the test cell is served by AHU with a chilled water plant 
and a hot water plant. 

In contrast, the selected source system is a fan coil 
unit (FCU) system, while the target system was a single 
zone VAV system as mentioned above. The synthetic FCU 
data was generated from HVACsim+ simulations 
(https://faultdetection.lbl.gov/data/).  

The typical fault type of the system is a fully opened 
cooling coil valve (Mulumba et al, 2015). The synthetic 
source dataset includes an equal amount of data for both 
fault-free and fault data. 

2.2 Development of source model with synthetic data 

Using the synthetic data of the FCU system, an ANN 
model was developed to classify fault-free and fault 
scenarios. A total of five variables (room temperature, 
cooling setpoint temperature, mixed air temperature, 
supply air temperature, operation status of the supply 
fan) were selected as input variables for the ANN model. 
This selection of the five input variables was purposefully 
designed to investigate the feasibility of the data-driven 
FDD whether the minimum data that can be easily 
collected from existing buildings would be sufficiently 
enough for realizing the data-driven FDD. The ANN 
model was trained to determine the presence of system 
errors using input data of one hour. Please note that one 
hour data consists of four samples with 15 min interval. 
A total of 5580 synthetic datasets equivalent of 5580 hrs 
were split into 3906 for training set and 1674 for 
validation set. The total number of hidden layers is 8, and 
for the activation functions, ReLU was used for the layers 
close to the input, while sigmoid was applied the layers 
closed to the output. 

2.3 Transfer learning to fine-tune the source model with 
real data 

The ANN model trained in Section 2.2 was then fine-
tuned to be used for the real system by transfer learning. 
In order to transfer the knowledge acquired from the 
synthetic data, so the input layer was re-trained. 
Specifically, fine-tuning was performed using only the 
fault-free data from the target system owing to the 
difficulty of collecting fault data from the real building 
system. In this study, only the first layer was unfrozen 
(Guo et al, 2019) and re-trained on target system fault-
free data with 30 epochs and learning rate is 0.001. 

3. RESULTS 

3.1 Performance metrics for model accuracy 

In this study, the model performance was evaluated 
using the confusion matrix and the F1-score. The 
confusion matrix (Fig. 3) shows the relationship between 
the model's predicted results and the actual labels (Deng 
et al, 2016). The F1-score is particularly useful for 
evaluating model performance in situations where the 
class distribution is uneven, providing a reliable 
assessment of how well the model correctly identifies all 

 
Fig. 2. Target system:F FLEXLAB Test cell X3A  

(Granderson, J., & Lin, G. (2019))  
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samples. The F1-score can be calculated using the 
following equation. 

 

F1 − score =
2TP

2TP + FP + FN
 

 

 
To evaluate the performance improvement 

enhanced by the transfer learning, two baseline cases 
and the proposed approach were defined as follows:  

• Baseline case #1 (Source Model): The source 
model was trained on the synthetic source 
dataset. It serves as the base model for transfer 
learning. 

• Baseline case #2 (Target Model, Fig. 2): A model 
trained using the measured dataset from the 
target system (Fig. 2). This model is a stand-
alone model trained specifically for the target 
system. 

• Transfer Model: The source model's weights 
were transferred and then fine-tuned using only 
the normal operation data from the target 
system. This transfer model is developed to 
employ the knowledge learned from the source 
model for the target system. 

3.2 Source model’s accuracy with synthetic data 

Fig.4 shows the confusion matrix results of the 
source model with the synthetic data. Please note that 
1,674 validation data consist of 824 fault-free and 850 
fault data. Both of the F1-scores for fault-free fault data 
are 1.0, which indicates that the faults of ‘the cooling 
valve fully opened’ can be accurately detected without 
errors. However, please note that the F1-scores of 1.0 
were obtained based on the synthetic data. In other 
words, sufficient knowledge about the cooling coil faults 
can be acquired through the synthetic data. 

3.3 Development of source model with synthetic data 

Fig.5 shows the results of the source model on the 
measured data from the target system, and the F1-scores 
are 0.71 for fault-free and 0.51 for fault data. In the case 
of fault-free samples, only 30 out of 53 predictions match 
the actual fault-free instances. For fault cases, out of 15 
actual fault cases, 13 were correctly predicted as faults, 
but there were many cases where fault-free data were 
incorrectly predicted as faults, leading to a lower F1-
score. This suggests that a lack of knowledge is remained 
as a bottleneck for describing the dynamic behavior of 
the real building system (Fig. 2). 

 
Fig.6 illustrates the prediction results of the target 

model with the measured data from the target system. 
The target model detected the fault of the target VAV 
system with F1-scores of 0.88 for fault-free and 0 for 
fault cases. Unfortunately, the target model predicts all 
instances as fault-free, indicating that it has been biased 
towards the fault-free class due to the data imbalance. 
This shows that the target model learned to prioritize the 

 
Fig. 3. Components of confusion matrix (True positive (TP), 
False positive (FP), False negative (FN), True negative (TN))  

 
 

 
Fig. 4. Result of source model on synthetic data  

 
 

 
Fig. 5. Result of source model on measured data from the 

target system  
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majority class (fault-free) during training, resulting in a 
complete failure to detect faults (the F1-score of 0). 

 
Fig.7 shows the prediction results of the transfer 

model, and the F1-scores for each type are 0.93 for fault-
free and 0.71 for fault cases. Compared to the source 
model on the measured data from the target system (Fig. 
5), a significant improvement was made in the F1-scores 
for fault-free predictions, increasing from 0.71 to 0.93, 
and also for fault predictions increasing from 0.51 to 
0.71. This indicates the need for the transfer learning 
when the obtained data form the target system is not 
sufficient or imbalanced.  

The number of instances where actual faults match 
predicted faults decreased from 13 to 10, but there was 
a substantial decrease in misclassifying actual fault-free 
instances as faults, reducing from 23 to 3, resulting in an 
overall increase in fault detection accuracy. 

 

4. CONCLUSION 
In this study, the authors presented an application 

of the transfer learning for the data-driven FDD for a real-
life case. Firstly, we developed a source model with the 
synthetic data consisting of fault-free and fault data. 
Then, the source model was fine-tuned using only 
normal operation data from the target system, called the 
transfer model. Finally, the prediction accuracies of the 
three models including the source model, target model 
and transfer model (defined in section 3.1) were cross-
compared.  

As a result, the source model that was trained with 
the synthetic data proved to be not good enough for the 
target system’s FDD as illustrated in Fig. 5. The target 
model that was trained with the measured data from the 
target system performed even worse than the source 
model because of the data imbalance problem (Fig. 6). In 
other words, the measured data collected from the 
existing target system did not include an even 
distribution of fault-free and fault data. Please note that 
it is common that most existing system’s data do not 
include sufficient fault data, which is the case in this 
study. In contrast, the transfer model performs best 
because it inherits the knowledge extracted from the 
synthetic data and then is fine-tuned with the measured 
data from the target system (Fig. 7).  

This study exemplifies how the transfer learning can 
be beneficially used for the FDD for the real-life case. In 
other words, the transfer learning can be a promising 
candidate to overcome the data imbalance issue in the 
FDD of existing buildings. As a further study, the authors 
will apply the transfer learning to many different building 
systems including chiller, boiler, and cooling tower. In 
addition, applicability/reliability of the ANN black-box 
model under different conditions will be investigated. 
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Fig. 6. Result of target model on measured data from the 

target system  
 
 

 
Fig. 7. Result of transfer model on measured data from the 

target system  
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