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ABSTRACT 
  The electrification of transportation modes such 

as cars, buses, and boats offers the potential of providing 
vehicle-to-X services during idle times. Pools of vehicles 
can provide balancing power, trade on the electricity 
market, or be used for load peak shaving. In this work, 
the usage patterns of electric cars, electric buses, and 
electric boats are investigated, and the provision of 
vehicle-to-X with these vehicles is simulated using an 
open-source simulation tool. A data analysis and a 
vehicle usage pattern assessment show that especially 
private electric cars behave predictably at night. It also 
reveals that the vehicle-to-X availability varies over the 
week for all vehicle types and is highest at night for cars 
and buses. During the day on weekdays, private cars are 
available for vehicle-to-X 30 to 70% of the time, the 
analyzed buses 5 to 50% of the time, and the availability 
of the boats depends on their primary use as ferries or 
private boats. If the three transportation modes provide 
vehicle-to-X during idle times, the equivalent full cycles 
that the lithium-ion batteries complete increase at 
different rates depending on the vehicle pool size, while 
the mean charging rates decrease. Furthermore, an 
exemplary aging analysis shows that the additional load 
of vehicle-to-X provision slightly increases the capacity 
loss of the car batteries compared to a paused 
unidirectional charging strategy. 
 
Keywords: electric vehicles, vehicle-to-X, vehicle-to-grid, 
lithium-ion batteries, transportation means, battery 
degradation 
 

NOMENCLATURE 

Abbreviations  

BSS Battery storage system 
e-Boat Electric boat 
e-Bus Electric bus 
e-Car Electric car 
EFC Equivalent full cycle 
FCR Frequency containment reserve  
LFP Lithium iron phosphate 
LIB Lithium-ion battery 
PS Peak shaving 
SOC State of charge 
V2B Vehicle-to-building 
V2G Vehicle-to-grid 
V2H Vehicle-to-home 
V2X Vehicle-to-X 

Parameters and Symbols 

b(t) 
Binary value indicating connection to 
electricity grid 

j Current timestep in period 
m Number of periods 
n Number of timesteps in period 
P(t) Power 

Predj 
Predictability score at current 
timestep 

v(t) 
Binary value of current V2X-ready 
ratio 
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1. INTRODUCTION 
The electrification of vehicles plays an essential role 

in decarbonization [1]. This is one of the reasons why the 
number of electric cars (e-Cars), electric buses (e-Buses), 
and electric boats (e-Boats) increase worldwide [1–3]. 
These vehicles introduce relatively large storage 
capacities to the market through their batteries [4]. From 
an economic perspective, it is therefore essential to 
exploit the potential of vehicle batteries during idle 
times. When the vehicles are connected to the electricity 
grid, they can be used for various purposes in the future 
[5]: First, they can contribute behind-the-meter to 
consumption of photovoltaic energy via vehicle-to-home 
(V2H), as is done with stationary home battery storage 
systems (BSS) [6]. Another behind-the-meter application 
is peak-shaving (PS), where pools of vehicles help meet 
peak loads in vehicle-to-building (V2B) [6]. Second, the 
vehicles can participate in electricity trading or provide 
grid services using vehicle-to-grid (V2G), corresponding 
to front-the-meter applications [7,8]. For example, 
arbitrage trading is performed on the intraday market in 
the former. In the latter, pools of vehicles can provide, 
for example, frequency containment reserve (FCR) to 
compensate for frequency fluctuations in the electricity 
grid. Generally, the bidirectional use of electric vehicles 
during idle times is called vehicle-to-x (V2X) [5]. 

Using vehicles in V2X can generate additional 
revenue and bring environmental benefits by increasing 
battery utilization. However, it also leads to a higher load 
on the vehicle batteries. With suboptimal planning, the 
provision of V2G can increase the degradation of vehicle 
batteries [9]. An increased degradation of vehicle 
batteries when providing primary frequency regulation 
was also shown by Thingvad et al. in a field trial in 
Denmark [10]. 

A detailed evaluation of the impact of V2X on various 
battery-related parameters is part of this work. Open-
access data from previous publications is used to 
simulate the provision of V2X in the storage simulation 
tool SimSES [11] (section 2 and section 3). The focus is on 
the applications FCR, intraday arbitrage trading, and PS. 
We use driving profiles of simulated private e-Cars and 
field data of city e-Buses and e-Boats. This way, various 
vehicle types and V2X applications are combined and 
analyzed. The key contributions include an analysis of the 
predictability of the vehicles (section 4.1), an analysis of 
the V2X availability of the vehicle types (section 4.2), an 
evaluation of the influence of V2X provision on battery-
relevant parameters (section 4.3), and an exemplary 
degradation analysis of the e-Car batteries (section 4.4). 

The innovative points of this work are enabling the 
simulation of V2X services in the open-source tool 
SimSES, statements on the V2X capability of various 
vehicle types, and the impact of V2X deployment on 
battery-relevant parameters.  

2. DATABASE 

2.1 Data of mobile BSS applications 

Due to the growing electrification of vehicles, such as 
buses, cars, and boats, lithium-ion batteries (LIBs) are 
increasingly being installed in these means of transport 
as traction batteries. For the simulation of the three 
means of transportation, we rely on data published as 
open data in a previous work [12,13]. Based on this work, 
load profiles of 60 e-Cars and six e-Boats and state-of-
charge (SOC) profiles of 52 e-Buses are available (see 
Table 1). The profiles have varying lengths, and the 
simulations in this work are always performed over the 
entire length of a vehicle profile. 

2.2 Data of stationary BSS applications 

Stationary BSSs are used in various applications. For 
example, they can perform arbitrage trading on the 
electricity market or provide grid services like FCR. 
Parked electric vehicles can also participate in these 
markets if they are connected to the electricity grid and 

 
 

Fig. 1. Graphical overview. Three vehicle types and four 
charging strategies are simulated with SimSES to generate 

results on driving behavior and battery-relevant 
parameters.  
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combined in pools. In the following sections these 
applications are called V2X applications. To simulate the 
V2X applications in SimSES, we use storage load profiles 
that we defined in a previous work as representative load 
profiles for the PS and FCR applications [14]. Since the PS 
profile was developed with a storage system with a 
maximum power of 40 kW and the vehicles' charging and 
discharging power range from 11 to 150 kW, the PS 
profile was scaled up by a factor of 10 so that its 
maximum power now corresponds to 400 kW. For the 
arbitrage application, we use a load profile determined 
in a research work by Collath et al., who optimized 
arbitrage trading with a stationary BSS considering 
calendar and cyclic degradation [15]. 

3. METHODOLOGY AND SIMULATION 
FRAMEWORK 

3.1 SimSES: Simulation of EVs and V2X provision 

The open-access storage system simulation tool 
SimSES was developed at the Technical University of 
Munich and has been presented in detail in a previous 
publication [17]. In our work on e-transportation and 
their utilization of batteries, the extension of SimSES to 
mobile applications was explained [12]. The publication 
compared charging strategies such as uncontrolled 
charging versus paused charging, where charging was 
performed after arrival to a minimum SOC and paused 
until just before departure. This paused strategy was 
extended for this work to allow vehicles to provide V2X 
during the paused period. This is done by superposing a 
V2X load profile of one of the stationary applications FCR, 
PS, or arbitrage over to the load (e-Cars, e-Boats) or SOC 
(e-Buses) profile. As soon as the respective vehicle is at 
home (e-Car), in the depot (e-Bus) or at the dock (e-
Boat), it is charged to a minimum SOC of 50%. 
Subsequently, the provision of V2X is simulated until the 
time when charging is required again for the vehicle to 

be fully charged at departure. The e-Buses are charged 
to the departure SOCs logged in real operation, as 
described in a previous publication [12]. Alternative 
approaches of charging strategies, for example charging 
only the amount of energy needed for the next trip, are 
not part of this work. For the estimation of the departure 
time, perfect foresight is assumed. To calculate the 
required V2X power at every point in time, the power of 
the V2X profile is divided by the number of currently 
existing vehicles in the pool and assumed to be the 
power to be provided by the vehicle. This means each 
vehicle in the pool must provide the same fraction of the 
total pool power. The estimation of the available number 
of vehicles is explained in section 4.3, as this is based on 
results from section 4.2. During V2X operation, the SOC 
of the vehicle can drop below 30%. If this is the case, the 
V2X operation is paused, and the vehicle is recharged to 
50% so that at least 30% is always available for 
spontaneous trips. In a field test, users have reported an 
average of 34% as the minimum desired available SOC 
[18]. 

This work uses batch simulations to simulate the 60 
e-Cars, 52 e-Buses, and six e-Boats in the three V2X 
markets FCR, arbitrage trading, and PS. SimSES then 
determines a variety of metrics that are calculated for 
each vehicle with each V2X market. One metric of SimSES 
is the binary quantification of whether the vehicle can be 
used for V2X at a point in time. The calculation of this 
value is shown in equation (1). This is the case when the 
e-Car is at home, the e-Bus at the depot, and the e-Boat 
at the dock (𝑏(𝑡) = 1) and not being charged (𝑃(𝑡) = 0). 
If the condition is met, the plugged-and-idle value 𝑣(𝑡) 
is 1. In contrast, if the vehicle is on the road or currently 
charging the plugged-and-idle value is 0. The proportion 
of the total time the vehicle can be used for V2G was 
referred to as the temporal V2G-ready ratio in [12]. 
Analogously, the value in this work is called V2X-ready 
ratio to imply that V2H and V2B could also be provided. 

 

𝑣(𝑡) = {
1,      𝑃(𝑡) = 0 𝑎𝑛𝑑 𝑏(𝑡) = 1  
0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                          

 (1) 

 

3.2 Quantification of driving behavior predictability 

The suitability of vehicles for V2X depends on various 
factors. These are, for example, the driving behavior, the 
grid connection times, and the predictability of 
departures and arrivals. For electric vehicle aggregators, 
it is relevant to be able to predict or estimate the 
available pool size at any given time. Supposing that the 
vehicle owner does not provide the next departure or 
arrival time, or it cannot be determined from bus 

Table 1: Data on the transportation means and the 
stationary BSSs used for V2X provision. 
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schedules, historical data can be used to estimate when 
the vehicle will depart. However, for historical data, 
estimating the extent to which the vehicle is used 
according to repetitive behavior, such as a daily 
commute or a trip to a weekly recreational activity, is 
crucial. The predictability is to be quantified as explained 
in the next paragraph.  

For the investigation of the weekly periodicity, the 
respective 𝑣(𝑡) vector is first decomposed into weekly 
segments. Figure 2 a) shows 𝑣(𝑡) for an exemplary e-
Car for each hour of the week over the year. The hourly 
resolution is chosen here for a better visualization and 
results from the mean value of the 60 one-minute values. 
This results in values between 0 and 1 in addition to the 
binary values. Moreover, Figure 2 b) indicates the 
probability that the value for 𝑣(𝑡) is 1 at a certain time 
during the week. At times when the probability is close 

to 100%, the vehicle can be used frequently for V2X. The 
diagrams show that there are phases during the week 
when the vehicle could provide V2X relatively 
consistently, such as Wednesday nights. Likewise, there 
are phases when the vehicle is often not available for 
V2X, such as Monday afternoons. For aggregators, these 
consistent phases are desirable because the vehicle is 
predictable. Less desirable are phases in which the 
vehicle is sometimes available and sometimes on the 
road. The worst case from the aggregator's point of view 
is when the vehicle is, on average, 50% available at one 
point in time. On the other hand, average values of 0 and 
100% are desirable because the vehicle is fully 
predictable during these times. We now determine a 
predictability score at each point of time of the week 
using equation (2). Therefore, we subtract 0.5 from the 
mean value of the values at one point in the week and 
multiply the absolute value by two. If the mean value is 
0.1, for example, this results in a predictability score 
(𝑃𝑟𝑒𝑑 ) of 0.8. The same 𝑃𝑟𝑒𝑑  results from a mean 
value of 0.9. In contrast, the worst case mean value of 
0.5 leads to a 𝑃𝑟𝑒𝑑 of 0.  

In addition to the weekly period shown here, periods 
of 24 hours or 30 days, for example, can also be used. No 
distinction would be made between working days and 
weekend days in the case of daily periods. If monthly 
periods were used, events occurring monthly could be 
better captured and predicted. 

  

𝑃𝑟𝑒𝑑𝑗 =  |
∑ 𝑣𝑗

𝑘𝑚
𝑘=1

𝑚
− 0.5| × 2 (2) 

 

With:  

      𝒗 =  

[
 
 
 
𝑣1

1 𝑣1
2 … 𝑣1

𝑚

𝑣2
1 𝑣2

2 ⋯ 𝑣2
𝑚

⋮ ⋮ ⋱ ⋮
𝑣𝑛

1 𝑣𝑛
2 ⋯ 𝑣𝑛

𝑚]
 
 
 
  

      𝑚:𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 
      𝑛:𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠 𝑝𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑 
 

 

𝑃𝑟𝑒𝑑⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  [

𝑃𝑟𝑒𝑑1

𝑃𝑟𝑒𝑑2

⋮
𝑃𝑟𝑒𝑑𝑛

]     

𝑃𝑟𝑒𝑑𝑗 ∈ {0; 1}      𝑗 = 1…𝑛 

 

 

3.3 Lithium-ion battery relevant KPIs and effects on 
battery degradation 

LiBs are subject to degradation effects, which can be 
separated into calendar and cyclic aging [19]. While the 
former occurs permanently over time, the latter depends 
on the cyclization of the battery. Various parameters 

 
Fig. 2. Hourly plugged-and-idle values of one exemplary e-
Car over the year segmented in weeks (a), probability of 
plugged-and-idle values of one over the week (b), and 

predictability score over the week (c). 
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influence the degradation of LIBs so that the utilization 
of LIBs can be quantified with respect to those 
parameters [12]. For example, the equivalent full cycles 
(EFCs) can be measured and compared with each other 
in various applications. For this purpose, the energy 
throughput is divided by the nominal energy of the 
battery. In general, higher cyclization, an increase in 
EFCs, leads to accelerated cyclic degradation. However, 
the extent of the increased degradation differs for 
different cell chemistries, as there exist more cycle-
stable and less cycle-stable chemistries [20]. Another 
relevant parameter is the average SOC experienced by 
the LIB. For example, if private e-Cars are charged 
immediately after arriving at home, the mean SOC is 
relatively high because the vehicles are parked for a long 
time at high SOCs [12]. If, in contrast, charging takes 
place later or with a pause, the mean SOC of the battery 
can be reduced [12]. The mean SOC also influences the 
degradation of LIBs [19]. For most LIBs, high mean SOCs 
should be avoided because an accelerated solid 
electrolyte interphase growth occurs in those SOC ranges 
[20]. This effect amplifies the calendar degradation of 
the LIB. The last parameter calculated in this work is the 
charging rate (C-rate), which describes the current at 
which a battery is charged or discharged in relation to the 
nominal capacity of the battery [12]. The C-rate also 
influences cyclic degradation. If LIBs are exposed to 
comparatively high C-rates, cyclic degradation increases 
[19]. In addition, other factors play a role in degradation, 
such as temperature and depth of discharge [20]. The 
decrease of remaining capacity and the increase in 
resistance of a LIB then result from an interplay of the 
various influencing factors. In SimSES, for example, semi-
empirical aging models are implemented for a Sony 
lithium iron phosphate (LFP) cell, published by Naumann 
et al. [21,22], and a nickel manganese cobalt (NMC) cell, 
published by Schmalstieg et al. [23]. Since many e-Buses 
and an increasing number of e-Cars have LFP batteries 
installed [1,24], we use the LFP model in section 4.4, 
which relies on a half-cycle counter. 

4. RESULTS 

This section presents the results of the work. First, 
the vehicle-specific predictability is analyzed in 
section 4.1. Afterwards, the V2X-ready ratio of the three 
vehicle types is illustrated in detail in section 4.2. Then, 
in section 4.3, battery-relevant parameters for V2X-
providing vehicles are compared with those of 
unidirectional charged vehicles. Finally, in section 4.4, 
the influence of V2X provision on battery aging is shown 
using an exemplary LFP cell for the e-Cars. 

4.1 Assessment of vehicle-specific predictability 

The following section quantifies the driving behavior 
predictability of the vehicles according to the calculation 
from section 3.2. The presented analysis was performed 
for each vehicle to determine the course of the 
predictability score. The mean predictability scores for all 
vehicles are shown as boxplots in Figure 3. The periods 
used for the predictability scores are 24 hours (a) and 
seven days (b), as shown in Figure 2. Due to the 
significant differences in predictability scores between 
daytime and nighttime, Figureshows the results for 
daytime (left) and for nighttime (right). The results for 
the three vehicle types are displayed and derived from 
the mean predictability scores of the 60 e-Cars, 52 e-
Buses, and six e-Boats.  

For the e-Cars, high predictability scores of 0.66 to 
0.82 are achieved at night. Here, the simulated e-Cars 
behave relatively predictably. The e-Buses show smaller 
differences among themselves at night than during the 
day, where the scores are between 0.27 and 0.7 for the 
weekly pattern, for example (Figure 3 b)). At the same 
time, however, the median score of the buses at night is 
lower than the median score of the daytime. This can be 
explained by the fact that the required charging energy 
at night depends on the driving distance during the prior 
day, and thus the e-Buses are irregularly available for 
V2X at night while they are mostly on the road during the 
day. The e-Boats show large scatter in their predictability 
scores both during the day and at night. For example, 

 
Fig. 3. Average predictability score of every vehicle during 

daytime (left) and during nighttime (right) using the 
predictability forecast for daily pattern (a) and weekly 

pattern (b). 
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there is one boat that achieves scores above 0.8. At the 
same time, there is another boat whose scores are below 
0.2. Depending on the use of the boats as a ferry or 
pleasure vessel, the predictability therefore differs. 
Lastly, the usage of the daily pattern (Figure 3 a)) can be 
compared to that of the weekly pattern (Figure 3 b)). 
Especially for the e-Cars with their varying driving 
behavior between weekdays and weekends, the 
predictability scores increase when using a weekly 
pattern especially during the day. Moreover, the range 
of the results decreases for the e-Cars using the weekly 
pattern. The e-Buses also show slight improvements in 
predictability scores for daytime hours when changing 
from daily to weekly pattern and no changes at night. In 
contrast, no differences are observed for the e-Boats. 

4.2 Temporal V2X availability of vehicle types 

The V2X-ready ratio indicates the proportion of the 
time a vehicle can be used for V2X, as explained in 
section 3.1. For the e-Cars, for example, we found mean 
temporal V2X-ready ratios (respectively V2G-ready 
ratios) of 70 to 80% in a previous work [12]. At this point, 
the V2X-ready ratios are analyzed in more detail. Figure 4 
shows the V2X-ready ratio of the three modes of 
transportation over a week. The dark line shows the 
median and the shading indicates the distributions with 
50%, 75%, and 100% of all values. A value of 33% on 
Monday at noon means that the vehicle would be 
available for V2X on average every third Monday at 
noon. A value of 67% indicates that the vehicle would be 
available two out of three Monday noon times.  

The private e-Cars show high temporal V2X-ready 
ratios of 90 to 100% at night (Figure 3 a)). On weekdays, 
the ratio drops to 30 to 70%, depending on the 
commuting behavior of the vehicle. On weekends, the 
ratio is also higher during the day, with 50 to 80%. E-
Buses also have the highest V2X-ready ratio at night, with 
50 to 100% (Figure 3 b)), although this is below the ratio 
of the e-Cars. During the day, the ratio drops to 5 to 50%, 
as the e-Buses are mostly on the road. The daytime 
behavior does not change much on weekends compared 
to weekdays. The e-Boat results are divided into two 
groups (Figure 4 c)): High-utilization e-Boats and low-
utilization e-Boats. The high-utilization e-Boats have 
temporal V2X-ready ratios of mostly below 40%. The 
low-utilization e-Boats, in contrast, have ratios between 
30 and 90%. Therefore, the e-Boats' potential differs 
greatly depending on how they are used. Moreover, the 
e-Boats do not show a typical daily pattern compared to 
the e-Cars and e-Buses. This is because the e-Boats are 
often charged at low power in the dock. In addition, low-

utilization e-Boats, for example, usually remain unused 
in the dock during the day as well as at night, resulting in 
no day-night rhythm as with the e-Buses and e-Cars. 
Overall, the evaluation shows that the temporal V2X 
potential of the vehicles varies over a week. Especially at 
night, e-Cars and e-Buses can be used for V2X. For e-
Boats, the potential depends on the use of the boats. 

4.3 Lithium-ion battery parameters with and without 
V2X 

The provision of V2X changes the load on vehicle 
batteries. The extent of this change is examined in this 
section. Battery-relevant parameters considered in this 
work are the number of EFCs, the mean SOC, and the 
mean C-rates. The simulations are performed with 
SimSES, as described in section 3.1. Since the stationary 
applications FCR, PS, and arbitrage were generated for 
one large stationary BSS, the individual vehicles in the 

 
Fig. 4. Temporal V2X-ready ratio over the week using an 
uncontrolled charging strategy for the e-Cars (a), e-Buses 

(b), and e-Boats (c). 
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pool of vehicles only need to provide a fraction of the 
power of the original stationary storage. In general, the 
respective fractions depend on the current pool size. In 
previous works, we determined economically optimal 
pool sizes for commercial e-Cars to generate as much 
revenue as possible with as few vehicles as possible 
[7,25]. 

In this work, we estimate the total pool sizes based 
on the temporal V2X-ready ratio and the maximum 
power of the vehicle batteries and charging stations (see 
Table 2). For example, for the provision of FCR, a pool of 
80 e-Buses is required to be able to deliver the 1.2 MW 
of maximum power at a minimal temporal V2X-ready 
ratio of 10%. The worst-case temporal V2X-ready ratio of 
the buses is 3% (Tuesday afternoon), according to 
Figure 4 b). Dimensioning the pool to this availability 
would significantly oversize the pool. Aggregators would 
likely switch to stationary backup BSS rather than sizing 
the pool for the annual minimum. As shown in 
Figure 4 b), the assumed 80 buses are not permanently 
available. The median temporal V2X-ready ratio 
fluctuates between 17% and 89% over the week. For this 
reason, the available number of vehicles is determined 
from the median temporal V2X-ready ratio at each point 
in time of the simulation, depending on the time of the 
current week. If the ratio is 17%, only 14 buses are 
available for FCR. If, on the other hand, the ratio is 89%, 
71 buses are available. The V2X power to be provided at 
any given time is then divided among the currently 
available vehicles. 

The simulation results for the three parameters daily 
EFCs, mean SOC and mean C-rate are shown in Figure 5. 
The subfigures are divided into e-Cars (left), e-Buses 
(center), and e-Boats (right). For each vehicle category, 
the boxplots of the three V2X markets are compared to 
the unidirectional paused charging strategy without V2X. 
Likewise, a comparison with an uncontrolled strategy 
would be possible [12]. At this point, however, we want 

to compare paused charging with the V2X-providing 
charging strategies. 

Figure 5 a) shows the daily EFCs of the 60 e-Cars as 
boxplots once for the paused charging strategy and once 
for the three V2X markets. The e-Cars encounter 0.07 to 
0.18 EFCs per day in the paused charging strategy. In 
contrast, in the FCR and intraday arbitrage applications, 
the number of daily EFCs increases to a range of 0.1 to 
0.23. For the median values, this corresponds to an 
increase of 42 to 50%. The provision of PS increases the 
median daily EFCs by only 8%. With unidirectional 
charging, the e-Buses encounter more cycles than the e-
Cars due to the longer driving distances (see Figure 5 b)). 
As a result, the e-Buses are available for V2X less often 
than the e-Cars (see Figure 3). Consequently, the daily 
EFCs of the e-Buses increase only slightly with the 
additional provision of V2X. The median FCR and intraday 
EFCs are 7 to 13% higher than those of paused charging 
strategy. If PS is provided, the median daily EFCs increase 
by only 1%. This is because in PS operation, the BSS 
capacity is rarely used. The stationary BSS used to 
generate the PS profile performed 21 EFCs over one year, 
while the FCR providing BSS completed 270 EFCs [14]. 
The e-Boats perform 0.026 to 0.277 EFCs daily with 
paused charging (see Figure 5 c). This means that the 
least used boat makes one EFC every month, and the 
most used boat makes one EFC every 3.6 days. If the e-
Boats are now used for FCR during idle periods, the daily 
EFCs increase by 1% to 40%. Similar values result in 
intraday trading. Accordingly, EFCs increase when e-
Boats are frequently used for V2X. However, if a boat is 
rarely available, the number of EFCs increases only 
slightly. The results for PS are similar to those for e-Cars 
and e-Buses. 

The mean SOCs of vehicle batteries are also affected 
by the provision of V2X (Figure 5 d) - f)). Compared to the 
paused unidirectional charging strategy, the mean SOCs 
change slightly as the V2X provision charges and 
discharges the batteries. The median mean SOC of the e-

Table 2: Pool size calculations. For determining the pool size, the maximum power required for V2X is divided by the maximum 
charging power (which equals the maximum discharging power) of the vehicles and by the assumed minimal temporal V2X-

ready ratio. 

T                     C                

M  .                     
               

4 % 4 % 4 % 1 % 1 % 1 % 1 % 1 % 1 % 

M  .                11 kW 11 kW 11 kW 15  kW 15  kW 15  kW 11 kW 11 kW 11 kW 

       k   F R          P  F R          P  F R          P  

M  .           1.  MW 1 MW 4   kW 1.  MW 1 MW 4   kW 1.  MW 1 MW 4   kW 

R q                   73     91     7  7 1 91 91  3 4 
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Cars increases by 0.6 to 1.4 percentage points when FCR 
or intraday trading is performed (Figure 5 d)). For the e-
Buses, the increase is 0.3 to 0.8 percentage points 
(Figure 5 e)). Most e-Boats also show only low rates of 
increase in mean SOC. Deviating from this, the mean SOC 
of one e-Boat (downward-pointing triangle) increases by 
4 percentage points in FCR to 9 percentage points in 
arbitrage. This e-Boat has a mean plugged and idle time 
of 74.8% and can therefore often be used for V2X. 

Figure 5 g) – i) present the mean C-rate of the 
vehicles in the paused charging and V2X strategies. In 
particular, the provision of FCR strongly reduces the 
mean C-rate experienced by the vehicle batteries. For 
example, the mean C-rate of the median e-Car decreases 
by 90% and of the median e-Bus by 46%. Providing 
intraday trading or PS also reduces the mean C-rates, but 
not as much as FCR. This is because FCR often demands 
low power values relative to the marketed power. In 
contrast, the power values provided in intraday trading 
and PS are higher. The fact that mean C-rates are 
reduced in all V2X markets shows that for the simulated 
pool sizes, the loads that vehicle batteries experience 
during V2X provision are often lower than the loads 
during typical driving and charging. 
 
 

4.4 Exemplary degradation analysis of e-Car battery 
with and without V2X 

In addition to quantifying parameters such as mean 
SOC or number of EFCs, SimSES can also be used to 
simulate the aging of vehicle batteries. As described in 
section 3.3, an LFP cell was simulated for this purpose 
over one year. The capacity losses of the e-Car batteries 
after one year range from 6.2% to 7.1% for all four 
strategies, mainly due to the calendric degradation 
caused by the high SOCs. Figure 6 shows the change in 
the capacity loss of the e-Car batteries when providing 
V2X services relative to the paused, unidirectional 
strategy over each e-Car's mean V2X-ready ratio. For 
example, if an e-Car has lost 500 Wh of its nominal 
capacity in a year in the paused strategy and 505 Wh in a 
V2X strategy, the relative change in capacity loss 
corresponds to 1%. 

In general, the V2X provision increases the capacity 
loss for the simulated cell. PS has the least influence on 
aging due to only slightly higher cyclization at 
comparatively low powers (see Figure 5). In a few cases, 
such as one e-Car with a mean V2X-ready ratio of 77.3%, 
the utilization for PS seems to reduce aging compared to 
the paused charging strategy (-0.15%). In these cases, the 
vehicle encounters only slightly more EFCs when 
providing PS compared to the paused charging strategy, 

 
 

Fig. 5. Battery-related parameters of the e-Cars, e-Buses, and e-Boats. (a) EFCs per day, (b) mean SOC, and (c) mean C-rate. 
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which slightly increases cyclic battery aging. For the 
exemplary e-Car, the increase is 2.2 EFCs in the one-year 
simulation period. At the same time, providing PS 
decreases the mean SOC, reducing calendar aging 
(exemplary e-Car from 90.59% to 90.34%). The two 
effects subsequently overlap, which can reduce the total 
capacity loss of the battery despite the provision of PS in 
a few cases. 

Providing FCR with the e-Cars results in a more 
significant loss of capacity in the simulations than 
providing PS. The aging is most severe if arbitrage trading 
is performed with the e-Cars. But even here, the 
maximum capacity loss increase compared to the paused 
charging strategy is 4.5%. This is because the LFP cell 
used is considered relatively cycle stable and can thus 
tolerate the increase in EFCs well.  

Figure 6 also shows that e-Cars with higher mean 
V2X-ready ratios also lead to larger capacity loss 
increases due to V2X provision (dashed lines). This trend 
holds true for all three V2X applications. However, when 
individual cars are examined, it can be observed that a 
higher V2X-ready ratio does not always lead to a higher 
increase in capacity loss. This is because the mean value 
of the V2X-ready ratio is not the only factor of relevance, 
but also the times at which the car is available and the 
times of V2X demand. Whether the increase in capacity 
loss can be compensated by generated revenues on the 
electricity (arbitrage) and power (FCR) markets or by 
avoided grid charges (PS) depends on the current prices 
or costs of the respective location. 

5. CONCLUSION AND OUTLOOK 
In the present work, the V2X deployment of three 

means of transport was simulated and investigated. For 
this purpose, a dataset of 60 simulated e-Cars, 52 field-
data e-Buses, and six field-data e-Boats was used on the 
one hand, and data from stationary BSS applications on 
the other. First, the vehicles were examined in terms of 
their predictability. It was found that in particular private 
e-Cars behave predictably at night. Furthermore, an 
analysis of idle times showed that V2X availability varies 
over the week, with e-Cars and e-Buses being mostly 
available at night. Another focus was the simulation of 
V2X provision in the simulation tool SimSES. This allowed 
battery-relevant parameters and the aging of the LIBs to 
be quantified. For example, the former showed that, 
compared to a paused charging strategy, the number of 
EFCs increases by 42% to 50% with FCR or intraday 
arbitrage for e-Cars and by 7% to 13% for e-Buses due to 
V2X deployment. The example aging simulation of the e-
Car LIBs showed an increased capacity loss, especially for 
intraday arbitrage trading and FCR provision. 

Building on the present work, further research areas 
can be identified. The results of section 4.3 and 
section 4.4 depend strongly on the pool composition and 
power allocation among the vehicles. Thus, pools could 
be formed from varying numbers of vehicles and from 
different vehicle types, such as a combination of e-Cars 
and e-Buses. Furthermore, in addition to the equal 
distribution of the required power to all available 
vehicles, a cascaded distribution or a distribution 
according to the remaining capacity of the batteries 
could also be implemented. Moreover, if the vehicles 
were actively discharged to 50% SOC, for example, the 
potential for V2X provision would increase, but the load 
on vehicle batteries would also rise. Additionally, more 
detailed analyses of battery aging could be made with 
further aging models and driving data over longer 
periods. Finally, the methodology and the results could 
also be used to evaluate the suitability of different 
battery cells for vehicles with and without V2X. 
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Fig. 1. Change in capacity loss of the e-Car batteries for the 
V2X strategies compared to the paused charging strategy 

without V2X over each e-Car's mean V2X-ready ratio. Each 
of the 60 e-Cars appears once in the diagram for each V2X 

strategy. The dashed lines show a linear fit for each V2X 
application across all cars. In the 1-year SimSES simulation, a 
Sony LFP battery with a degradation model from Naumann 

et al. is used [21,22]. 
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